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Abstract

Traditional estimation schemes such as Maximum A Posterior (MAP) or Maximum

Likelihood Estimation (MLE) determine the most likely parameter set associated with

received signal data. However, traditional schemes do not retain entire posterior

distribution, provide no confidence information associated with the final solution, and often

rely on simple sampling methods which induce significant errors. Also, traditional schemes

perform inadequately when applied to complex signals which often result in multi-modal

parameter sets. Credible Set Estimation (CSE) provides a powerful and flexible alternative

to traditional estimation schemes.

CSE provides an estimation solution that accurately computes posterior distributions,

retains confidence information, and provides a complete set of credible solutions.

Determination of a credible region becomes especially important in Synthetic Aperture

Radar (SAR) Automated Target Recognition (ATR) problems where signal complexity

leads to multiple potential parameter sets. The presented research provides validation

of methods for CSE, extension to high dimension/large observation sets, incorporation of

Bayesian methods with previous work on SAR canonical feature extraction, and evaluation

of the CSE algorithm. The results in this thesis show that: the CSE implementation of

Gaussian-Quadrature techniques reduces computational error of the posterior distribution

by up to twelve orders of magnitude, the presented formula for computation of the posterior

distribution enables numerical evaluation for large observation sets (greater than 7,300

observations), and the algorithm is capable of producing M-th dimensional parameter

estimates when applied to SAR canonical features. As such, CSE provides an ideal

estimation scheme for radar, communications and other statistical problems where retaining

the entire posterior distribution and associated confidence intervals is desirable.
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CREDIBLE SET ESTIMATION, ANALYSIS, AND APPLICATIONS IN SYNTHETIC

APERTURE RADAR CANONICAL FEATURE EXTRACTION

I. Introduction

Traditional estimation schemes apply maximum a posteriori (MAP) or maximum

likelihood estimation (MLE) to determine the most likely parameter set associated

with received signal data. However, traditional schemes do not retain entire posterior

distribution, provide no confidence information associated with the final solution and

often rely on simple sampling methods which induce significant errors. It is desirable

to implement an estimation scheme that can accurately compute posterior distributions

associated with various signal parameters. The synthetic aperture radar (SAR) automatic

target recognition (ATR) community has interest in knowing the probabilities associated

with the parameters of various feature models [1]. The presented research builds on

the ability to extract probability distributions [2] by covering four areas: validation of

methods for credible set estimation, extension to large dimension/large observation sets,

integration of Bayesian methods with previous work on SAR canonical feature extraction,

and evaluation of the Credible Set Estimation (CSE) algorithm.

1.1 Problem Statement

It is possible to apply CSE to accurately compute posterior distributions associated

with various signal parameters [3]. CSE computes the entire posterior distribution using

Gauss-Quadrature integration, resulting in a high accuracy estimator that retains confidence

information associated with MAP estimates.

1



Previous work on CSE is limited to small observation vectors (less than 200

observations) and two parameters [2]. It is desirable to extract posterior distributions

for features with more parameters and observations; however, numerical precision issues

prevent direct computation of the posterior distribution equation. Also, little validation has

been performed for the CSE method. Finally, it is desirable to present results for the CSE

when applied to more complex SAR data which contains a realistic target. For this thesis,

CSE is implemented to demonstrate estimator performance in three scenarios:

1. Simple single parameter estimation,

2. Simple direct current (DC) and sinusoidal signals with two parameters,

3. Complex canonical features with up to five parameters.

1.2 Research Goals, Methodology and Results

This thesis encompasses four areas: validation, extension, incorporation and

evaluation. Validation is accomplished by examining methods presented by Rademacher

[2] and testing the approach on simple DC and sinusoidal signals. The results of

validation are presented in an error analysis study by comparing the CSE method against

traditional probability distribution function (PDF) sampling methods. The algorithm

presented by Rademacher is extended to higher order data sets with large numbers of

observations. Extension to data sets with large observation vectors is accomplished

by presenting a formula for the numerical evaluation of the posterior distributions

that overcomes numerical precision limitations associated with direct computation

of the distribution. Incorporation is accomplished by applying the SAR canonical

feature extraction fundamentals presented by Crosser [4] to the algorithm presented by

Rademacher, specifically by implementing Crosser’s flight path selection techniques to

the CSE. Finally, evaluation of the new estimator is performed on simple SAR scenes

comprised of 3-D canonical features.
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The results in this thesis show the following:

• Validation: application of Gauss-Quadrature numerical integration techniques to

Bayesian posterior distribution computation is more effective at providing accurate

probability mass function (PMF)s than traditional sampling techniques. The

presented method is also more effective at capturing probability, with fewer missed

regions, than traditional sampling techniques.

• Extension: The presented formula for the computation of the Bayesian posterior dis-

tribution enables numerical evaluation for large observation sets (greater than 6000

observations). Extremely large observation sets will require higher-order polynomi-

als for Gauss-Quadrature integration, resulting in exceptional computational require-

ments. This thesis presents an equation for the computational complexity in Chapter

4. The computational complexity can be effectively controlled by varying grid inter-

val, integration polynomial and the search space for each parameter.

• Incorporation: The CSE method performs well for “straight-and-level” flight paths.

However, adequate flight path selection provides more reliable parameter estimation

(within the limitations of SAR) than arbitrarily selected flight paths.

• Evaluation: CSE is able to extract posterior distributions for features with up to five

parameters. This thesis presents formulas for the computational complexity required

when implementing the CSE. Estimation of features with six or more parameters

requires splitting each large distribution into multiple smaller distributions to avoid

large computational overhead.

1.3 Thesis Organization

This thesis is organized in the following manner:
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• Chapter 2: presents background material from a comprehensive literature review.

The material includes information on Bayesian methods, numerical methods,

Gaussian-Quadrature integration methods, 3-D canonical features, radar phase

history data, flight path selection, and high performance computing (HPC).

• Chapter 3: presents the results of validation and extension. A formula is derived

for numerical evaluation of posterior distributions with large observation sets and an

updated process for the CSE. The updated formula is then used to validate the CSE

method when compared to MAP estimators that utilize simple sampling methods.

• Chapter 4: presents the results of incorporation and validation. The work presented

in Chapter 3 is extended to SAR scenes containing 3-D canonical features. The

algorithm integrates flight path selection techniques presented by Crosser [4]. The

basic CSE method is applied to SAR phase history data to provide posterior

distributions for up to five parameters. The results presented in Chapter 4 are

considered a simulation since the CSE is applied to test scenarios containing only

simple shapes.

• Chapter 5: presents conclusions and future work.

1.4 Key Assumptions

Applicable key assumptions will be presented at the start of each chapter. However,

the following list details key assumptions applicable to the research as a whole:

• Received signals contain only a signal of interest and additive white Gaussian noise.

This assumption is required by application of the univariate normal distribution as

the likelihood function.

• Parameters are considered to be independent. This assumption is required in order

to initialize prior distributions without a covariance matrix. Also, the parameters
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used for three-dimensional (3-D) canonical features (size, location, orientation) are

independent by definition.

• Prior distributions are finitely bounded. This assumption makes numerically

computing the denominator in the posterior distribution possible.

• Shape type is known a priori. The shape type must be known in advance so the CSE

can apply the appropriate signal model based on Jackson’s 3-D canonical features

[4, 5].
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II. Background

This chapter presents background material from a comprehensive literature review.

The material includes information on Bayesian methods, numerical methods, Gauss-

Quadrature integration methods, 3-D canonical features, radar phase history data, flight

path selection, and HPC.

2.1 Bayesian Methods

The goal of the CSE is to provide parameter estimates of the posterior distribution for

canonical features. Typical likelihood functions provide the probability that random signal,

x, was received given a known set of parameters,Θ. For a signal in additive white Gaussian

noise, the likelihood function for x becomes

p(x|Θ) =
1

(2πσ2)
N
2

exp

− 1
2σ2

N−1∑
n=0

(x[n] − fn(Θ))2

 , (2.1)

where σ is the variance associated with the noise power, N is the number of observations,

x[n] is the received signal, and fn(Θ) is a signal model based on a parameter set, Θ. One

way to estimate the signal parameters Θ from measurements x is to find the maximum

likelihood estimate: the Θ that maximizes (2.1) for a given x. However, for ATR, it is

informative and useful to find the probability of a set of parameters, based on a received

signal. Determining p(Θ|x) requires the application of Bayes’ Rule, as well as prior

knowledge of the parameters of interest [6]. Bayes’ Rule is defined as

p(Θ|x) =
p(x|Θ)p(Θ)∫
p(x|Θ)p(Θ)dΘ

, (2.2)

where p(Θ) is the prior distribution. Equation (2.2) provides a solution for the posterior

distribution based on unknown parameters, Θ and a known signal x. It is important

to note that the likelihood function as well as the posterior distribution presented

above are continuous functions. Since there is often no closed form solution to the
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posterior distribution, the posterior distribution will be discretized using Gauss-Quadrature

techniques and estimated as a PMF throughout the presented research.

2.1.1 Maximum a Posteriori Estimation.

The MAP estimation approach chooses a parameter set, Θ̂ that maximizes the

posterior distribution, p(Θ|x) [6]. The MAP estimate is defined as

Θ̂ = arg max
Θ

p(Θ|x). (2.3)

In many applications, the MAP estimator is implemented to find the maximum argument

of the log-likelihood function, defined as

Θ̂ = arg max
Θ

log p(Θ|x). (2.4)

Applying the MAP estimator as a function of log-likelihood significantly reduces the

numerical precision required [6]. Typically, any leading constants for p(Θ|x) are dropped to

reduce precision requirements further. Equation (2.4) is implemented via a grid search over

a range of parameters, Θ. The sampled distribution is then either normalized (such that the

distribution sums to one), or left without normalization. The argument of the maximum is

simply selected, resulting in the MAP estimate of the parameter set.

2.2 Gaussian Quadrature Integration Methods

Methods presented by Rademacher [2] implement the posterior distribution function

as a PMF, as opposed to sampling the PDF and normalizing. In order to compute the PMF,

each sub-region in the posterior PDF must be integrated to determine the total probability

in that region. Gaussian Quadrature numerical integration techniques can be employed to

compute the integral for each sub-region [7–10]. Consider the finitely bounded integral

g(x) =

∫ b

a
f (x)w(x)dx, (2.5)

where f (x) is the function to be integrated and w(x) is a weighting function. Using the

specific case where the weight function is the unity, w(x) = 1, the integral in Equation (2.5)
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can be estimated as

g(x) ≈
Nl∑

i=1

wi f (xi), (2.6)

where wi are individual weights, xi are abscissa points, and i is the order of the integration

polynomial. In the specific case presented above, the abscissa points as well as the

weights are defined according to the desired polynomial order Nl. Rademacher presents

the following process for setting up the numerical integration method [2]:

1. Decide which orthogonal polynomial is most appropriate based on weight function,

w(x). In this thesis, we assume a legendre polynomial associated with the weighting

function, w(x) = 1.

2. Decide on polynomial order Nl.

3. Compute the roots of the Nl-th order orthogonal polynomial. These are the abscissa

points xi.

4. Compute the weight coefficients, wi.

5. Compute the value of the function at the N abscissa points.

6. Multiply each weight, wi, with the function value f (xi) to result in N weighted

coefficients.

7. Sum the weighted coefficients together. The result is the integral approximation.

In this thesis, Gauss-Quadrature integration is implemented as part of the CSE

posterior distribution estimation scheme. Work by Rademacher [2] provided limited results

using the quadrature integration method. This thesis provides validation of the method by

comparing the quadrature method against a truth using a distribution with a closed-form

integral. Further, the concept is extended to M-dimensions.
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2.3 Credible Set Estimation

CSE relies on Bayesian methods in order to compute the posterior distribution of a

set of parameters given a received signal [2]. For a signal with additive white Gaussian

noise (WGN), the resulting likelihood function is the univariate normal distribution [6],

shown in Equation (2.1). The “true” signal is based upon a model of the ideal signal.

Classical estimators, such as MAP, seek to extract one, and only one “true” value [6].

MAP estimation is typically accomplished by evaluating the posterior distribution across

a set of sampled parameter values, and determining the maximum value. In applications

such as ATR, it is more desirable to determine the probability of a parameter set given an

observed signal, p(Θ|x) [1]. Bayes’ Rule (2.2) is applied to determine the desired posterior

distribution.

Retaining the entire posterior distribution is desirable, as often times the same signal

can be generated using various sets of parameters (estimating the phase in a sinusoid for

example). The result from retaining the posterior distribution is multiple, distinct regions

of the likelihood that would be masked if a MAP were used. This thesis extends CSE to

multiple dimensions, large numbers of observations and provides validation data to support

the implementation.

CSE returns the posterior distribution estimation of Equation (2.1), as well as the

“credible region”, which contains a user-defined amount of probability mass. The

computation for the posterior distribution is then iterated, using finer search intervals until

a user-defined search interval is reached. Figure 2.1 contains a flowchart depicting the

generalized estimator.
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Figure 2.1: Flowchart depicting the CSE implementation. Red box indicates parallel
process. Dashed blue box indicates updates to Rademacher’s algorithm presented in this
thesis.

2.4 3-D Canonical Feature Models

To illustrate application of the CSE on complex signals, we select 3-D canonical

features as defined by Jackson [11]. Jackson defines models associated with six canonical

shapes: plate, dihedral, trihedral, sphere, cylinder and top-hat, as shown in Figure 2.2. The

canonical feature model defines each shape in terms of a polarization response, Pβ(Λ,Θ),

complex amplitude response, MΓ(Λ,Θ), and a differential range model, ∆R(Λ,Θ). These

models are defined according to the radar flightpath, Λ, and parameter set, Θ. The overall

scene response can be modeled as a sum of all scatterers

S (Λ,Θ) =
∑

m

Pβ(Λ,Θ)MΓ(Λ,Θ)e jk∆R(Λ,Θ). (2.7)

Each feature is defined by a parameter set (Θ) consisting of an amplitude scale factor

(A), shape location (X,Y,Z), roll, pitch, and yaw (γ, θ, φ), and length, height and radius

(L,H, r). A vector (Λ) contains the azimuth and elevation angles throughout the flight path.

Only a portion of the parameters are applicable to each shape due to the unique geometries,

as shown in Table 2.1.

Table 2.2 presents the response definitions for each shape. Note that the models are

defined only within the azimuth (θ) and elevation (φ) ranges depicted. The differential
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Figure 2.2: Six canonical features as defined by Jackson [5]. The shapes are a (a) plate, (b)
dihedral, (c) trihedral, (d) cylinder, (e) top-hat, and (f) sphere.

Table 2.1: Applicable parameters for each shape type [4, 5].

Shape X Y Z L H r γ θ φ

plate X X X X X X X X
dihedral X X X X X X X X
trihedral X X X X X X X
sphere X X X X
cylinder X X X X X X X X
top-hat X X X X X X X X

range models for each shape are shown in Table 2.3. The polarization response matrix is

defined as [12]

P(Λ;Θ) =

pvv pvh

phv phh

 . (2.8)
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The polarization responses for odd and even bounce are defined depending on object

rotation around the receiver line of sight (LOS), ζr and rotation about the transmitter LOS,

ζt. The polarization response models are defined as

Podd =

−1 0

0 −1

 , (2.9)

Peven =

− cos(ζt + ζr) sin(ζt + ζr)

sin(ζt + ζr) cos(ζt + ζr)

 . (2.10)

Table 2.2: Odd or even polarization bounces and amplitude response for each shape type
[11]. The magnitude of the amplitude is scaled by the shape size and is given with the
parameter A. Note that φ̃ and θ̃ are azimuth and elevation angles relative to the reference
orientation of each shape (see Figure 2.2) and k is the wave number, defined as k =

2π f .
c

where c is the speed of light and f is the transmitting frequency.

Shape Polarization
Bounce

MΓm(k,Λ;Θm) A

plate odd jk
√
π
Asinc(kL sin φ̃ cos θ̃)sinc(kH sin θ̃); θ̃ ∈ [−π2 ,

π
2 ], φ̃ ∈ [−π2 ,

π
2 ] LH

dihedral even jk
√
π
Asinc(kL sin φ̃ cos θ̃) ×

{
sin θ̃; θ̃ ∈ [0, π4 ]

cos θ̃; θ̃ ∈ [ π4 ,
π
2 ]

}
; φ̃ ∈ [−π2 ,

π
2 ] 2LH

trihedral odd

jk
√
π
A ×

{
sin(θ̃+ π

4−tan−1( 1√
2

)); θ̃ ∈ [0,tan−1( 1√
2

)]

cos(θ̃+ π
4−tan−1( 1√

2
)); θ̃ ∈ [tan−1( 1√

2
), π2 ]

}
×

{
− cos(φ̃− π4 ); φ̃ ∈ [− π4 ,0]
sin(φ̃− π4 ); φ̃ ∈ [0, π4 ]

} 2
√

3H2

sphere odd A
√
π; θ̃ ∈ [−π2 ,

π
2 ], φ̃ ∈ [−π, π] r

cylinder odd A
√

jk cos φ̃ sinc(kL sin φ̃ cos θ̃); θ̃ ∈ [−π2 ,
π
2 ], φ̃ ∈ [−π2 ,

π
2 ] L

√
r

top-hat even A
√

jk ×
{

sin θ̃; θ̃ ∈ [0, π4 ]

cos θ̃; θ̃ ∈ [ π4 ,
π
2 ]

}
; φ̃ ∈ [−π, π]

√
8r
√

2
H
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Table 2.3: 3-D scatterer differential range models. ∆R0 represents the range to the scattering
center location. φt and θt are the bistatic azimuth and elevation angles at the transmitter,
and φr and θr are the bistatic azimuth and elevation angles at the receiver.

∆R

plate R0

dihedral R0

trihedral R0

sphere ∆R0 +
(
r(cos θt + cosθr) cos

(
φt−φr

2

)
cos

(
θt+θr

2

)
+ r sin

(
θt+θr

2

)
(sin θt + sin θr)

)
cylinder ∆R0 +

(
r cos

(
θt−θr

2

)
(cos φt + cos φr)

)
top-hat ∆R0 +

(
r cos

(
φt−φr

2

)
(cos θt + cos θr)

)

2.5 Canonical Feature Extraction

For the simulation portion of this thesis, the phase history (PH) returns observed

from an airborne radar are generated according to the equations presented for Jackson’s

canonical models [5]. To this point, extracting 3-D canonical features has been performed

using a gradient descent [5] and dictionary search methods [4, 13]. Hammond [13]

initially performed the search using a coarsely sampled dictionary, in which every possible

combination of parameters was used to generate test PH. This test data was then compared

against the true data, and the dictionary entry with the highest correlation was selected as

the true value.

Follow-on work by Crosser [4] developed a more complete process which provided a

detailed algorithm to extract Jackson’s 3-D canonical features. Crosser’s process, depicted

in Figure 2.3 included three primary steps: Radar Data Collection and Image formation,

Parameter Estimation and Bounding, and Dictionary Formation and Search. The final step,

dictionary formation and search, will be replaced by the methods in this thesis, and as such

will not be discussed here.
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Figure 2.3: Canonical feature extraction algorithm including steps and associated
inputs/outputs [4].

2.5.1 Flight Path Selection.

Crosser presented a method to determine adequate flight paths for 3-D canonical

feature extraction [4]. The method produces flight paths that consider two key aspects of

feature extraction. The first aspect is specular response for the plate, dihedral and cylinder.

Because of the narrow specular response, flight paths must overlap. The second aspect is

radius estimation. Crosser demonstrates that the radius can only be estimated with flight

paths that include diversity in both grazing angle and tilt angle [4]. Crosser presents three

flight paths:

• Up-Down: provides sufficient specular diversity to be used with the plate, dihedral,

trihedral.

• Disjoint: provides grazing and tilt angle diversity to be used with the sphere and

top-hat.

• Two-Pass: balances specular diversity and grazing/tilt angle diversity to be used with

the cylinder.

Each flight path consists of two radar passes. Figure 2.4 depict the flight paths as

recommended by Crosser [4]. For this thesis, CSE is implemented using Crosser’s flight

paths.
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(a) Up-down flight path. (b) Disjoint flight path.

(c) Two-pass flight path.

Figure 2.4: Three flight paths shown in azimuth and elevation [4].

2.6 High Performance Computing

Previous work by Rademacher [2] utilized Compute Unified Device Architecture

(CUDA) to execute the CSE algorithm on high powered graphics processing unit (GPU).

However, extending the CSE to large observation sets and higher dimensions significantly

increases memory requirements beyond what current graphics cards are capable of

providing. Also, implementing the CSE on a four-core, 3.0 GHz Intel i7 workstation with

32 GB of random access memory (RAM), to perform five parameter estimates using a

signal with 6000 observations, and a total of 50 sampling points along each parameter
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takes approximately 72 hours. As a result, it is impractical to implement the CSE to run on

a standard workstation.

The presented research utilizes Department of Defense (DoD) high performance

computing (HPC) modernization program resources, specifically the Air Force Research

Laboratory (AFRL) DoD Supercomputing Resource Center (DRSC) Spirit system. Table

2.4 outlines the capabilities of the system [14]. The CSE is implemented in Chapter 4

to execute calculations for each parameter permutation in parallel on the Spirit system,

resulting in a computation time of about six hours for the scenario described above.

Table 2.4: Capabilities of the AFRL DRSC Spirit system [14].

Login Nodes Compute Nodes

Total Cores — Nodes 128 — 8 73440 — 4590

Cores/Node 16 16

Core Type Intel Xeon Sandy Bridge Intel Xeon Sandy Bridge

Core Speed 2.6 GHz 2.6 GHz

Memory/Node 64 GB 32 GB

Accessible Memory/Node 62 GB 30 GB
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III. Theory

The intent of this chapter is to validate the estimation model presented by Rademacher

[2]. A generalized method, including extraction of PMFs for both single and multiple

parameters is explored. Validation of the method is performed by comparing traditional

sampling methods and Gaussian quadrature integration. Both graphical and tabular results

are presented.

3.1 Key Assumptions and Implementation

The following key assumptions apply to the method presented in this chapter:

• Received signals contain only a signal of interest and additive white Gaussian noise.

This assumption is required by application of the univariate normal distribution as

the likelihood function.

• Parameters are considered to be independent. This assumption is required in order to

initialize prior distributions without a covariance matrix.

• Prior distributions are finitely bounded. This assumption makes numerically

computing the denominator in the posterior distribution possible.

3.2 Numerical PMF Computation

Directly evaluating Equation (2.1) presents significant numerical precision issues. For

large observation vectors, the exponential term quickly grows, even for small values in

the error term (x[n] − fn(Θ))2. As a result, the exponential term can quickly exceed the

MATLAB limit of e710. To avoid precision issues, it is possible to perform all computations

as the log of the PMF. The Log-Sum-Exponential method can then be applied to create an

equation MATLAB can compute without precision issues. The equation for the posterior
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distribution for a signal in white Gaussian noise is

p(Θ|x) =
p(X|Θ)p(Θ)∫
p(X|Θ)p(Θ)dΘ

,

=

1
(2πσ2)N/2 exp(−

∑N
n=1(x[n]− f (Θ))2

2σ2 )p(Θ)∫
1

(2πσ2)N/2 exp(−
∑N

n=1(x[n]− f (Θ))2

2σ2 )p(Θ)dΘ
. (3.1)

The denominator in Equation (3.1) acts as a normalization term, ensuring that the PDF

integrates to one. However, for large observations N, MATLAB and other computational

tools may compute the denominator to be zero, resulting in divide by zero errors. The

numerical precision required can be significantly reduced by removing the leading constant,

which may be very large or very small depending on N and σ. To avoid precision issues,

Equation (3.1) is rewritten as

p(Θ|x) =

1
(2πσ2)N/2 exp(−

∑N
n=1(x[n]− f (Θ))2

2σ2 )p(Θ)∫
1

(2πσ2)N/2 exp(−
∑N

n=1(x[n]− f (Θ))2

2σ2 )p(Θ)dΘ
,

=

1
(2πσ2)N/2 exp(−

∑N
n=1(x[n]− f (Θ))2

2σ2 )p(Θ)

1
(2πσ2)N/2

∫
exp(−

∑N
n=1(x[n]− f (Θ))2

2σ2 )p(Θ)dΘ
,

=
exp(−

∑N
n=1(x[n]− f (Θ))2

2σ2 )p(Θ)∫
exp(−

∑N
n=1(x[n]− f (Θ))2

2σ2 )p(Θ)dΘ
. (3.2)

It is now possible to employ additional numerical computation techniques. Recall, we will

be integrating sub-regions using the Gauss Quadrature rule, shown as

p(a ≤ Θ ≤ b|x) =

∫ b

a

 exp(−
∑N

n=1(x[n]− f (Θ))2

2σ2 )p(Θ)∫
exp(−

∑N
n=1(x[n]− f (Θ))2

2σ2 )p(Θ)dΘ

 dΘ. (3.3)

The denominator term is a constant, so it can be removed from the integral, shown as

p(a ≤ Θ ≤ b|x) =

∫ b

a

[
exp(−

∑N
n=1(x[n]− f (Θ))2

2σ2 )p(Θ)
]

dΘ∫
exp(−

∑N
n=1(x[n]− f (Θ))2

2σ2 )p(Θ)dΘ
. (3.4)

Now the Gauss Quadrature method can be applied to the numerator, shown as

p(a ≤ Θ ≤ b|x) ≈
∑Nl

i exp(−
∑N

n=1(x[n]− f (Θi))2

2σ2 )p(Θi)wi∫
exp(−

∑N
n=1(x[n]− f (Θ))2

2σ2 )p(Θ)dΘ
. (3.5)
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Computing Equation (3.5) directly induces large precision errors as the denominator

term will evaluate to very small numbers with large observations N, resulting in divide by

zero errors. To avoid precision issues, the Log-Sum-Exponential method can be applied.

The method works by determining the common term in a sum of exponentials and then

computing the remaining terms, for example

f (x) = log(e−5000 + e−5001),

= log(e−5000(e0 + e−1)),

= − 5000 + log(1 + e−1). (3.6)

To apply the log-sum-exponential method, Equation (3.5) must be rearranged such that the

prior distribution and the weighting function are included in the exponential term, shown

as

log p(a ≤ Θ ≤ b|x) ≈ log


∑Nl

i exp(−
∑N

n=1(x[n]− f (Θi))2

2σ2 )p(Θi)wi∫
exp(−

∑N
n=1(x[n]− f (Θ))2

2σ2 )p(Θ)dΘ

 ,
≈ log

 Nl∑
i

exp
(
−

∑N
n=1(x[n] − f (Θi))2

2σ2

)
p(Θi)wi


− log

[∫
exp

(
−

∑N
n=1(x[n] − f (Θ))2

2σ2

)
p(Θ)dΘ

]
. (3.7)

Notice that Equation (3.7) does not exactly match the form in the Log-Sum-Exponential

methods. Applying the equalities p(Θi) = exp(log(p(Θi))) and wi = exp(log(wi)) results in

log numeratorterm ≈ log

 Nl∑
i

exp
(
−

∑N
n=1(x[n] − f (Θi))2

2σ2

)
exp

(
log(p(Θi))) exp(log(wi)

) ,
≈ log

 Nl∑
i

exp
(
−

∑N
n=1(x[n] − f (Θi))2

2σ2 + log(p(Θi)) + log(wi)
) . (3.8)
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Numerically, the exponential in Equation (3.8) is computed as

exponentialterm = exp



(
−

∑N−1
n=0 (x[n]− f (Θ1))2

2σ2 + log(p(Θ1)) + log(w1) − α
)

+ α(
−

∑N−1
n=0 (x[n]− f (Θ2))2

2σ2 + log(p(Θ2)) + log(w2) − α
)

+ α

...


,

= exp(α) exp



(
−

∑N
n=1(x[n]− f (Θ1))2

2σ2 + log(p(Θ1)) + log(w1) − α
)

(
−

∑N
n=1(x[n]− f (Θ2))2

2σ2 + log(p(Θ2)) + log(w2) − α
)

...


, (3.9)

where α is a common factor between entries. Equation (3.9) is now computed in MATLAB

as

log numeratort ≈ log

 Nl∑
i

exp(α) exp
(
−

∑N
n=1(x[n] − f (Θi))2

2σ2 + log(p(Θi)) + log(wi) − α
) ,

≈ log

exp(α)
Nl∑
i

exp
(
−

∑N
n=1(x[n] − f (Θi))2

2σ2 + log(p(Θi)) + log(wi) − α
) ,

≈α + log

 Nl∑
i

exp
(
−

∑N
n=1(x[n] − f (Θi))2

2σ2 + log(p(Θi)) + log(wi) − α
) .
(3.10)

By pulling the common factor, α, out of the exponential, MATLAB is able to compute

each term without overflowing. This makes computing the PMF possible for large numbers

of observations. At this point, the numerator term can be computed for each parameter set,

and stored in log form. Computation of the denominator term follows the same pattern.

Notice that the denominator is just the integral of the original numerator term. If the

quadrature rule is applied over sub-regions of the entire integral (which we assume in our

implementation), then it is possible to convert the denominator to a summation, which will

approximately represent the integral over the entire region. Keep in mind that the regions

were calculated above as the log of the numerator. Therefore the exponential of each

numerator region must be computed. Here, we apply the quadrature rule, the identities

in Equation (3.8) and the Log-Sum-Exponential method to obtain the denominator term,
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shown as

denominatorterm ≈ log
∑
ALL

exp

log
∑

i

exp
(
−

∑N
n=1(x[n] − f (Θi))2

2σ2 + log(p(Θi)) + log(wi)
) ,

≈ log
Nl∑

ALL

exp
[
log numeratorterms

]
. (3.11)

Note that
∑

ALL indicates that all of the numerator terms computed using Equation

(3.10) are summed. The presented research assumes that prior distributions are finitely

bounded, which makes numerically computing the sum in Equation (3.11) possible. Using

Equations (3.10) and (3.11), the PMF estimation of Equation (2.2) is computed directly as

log p(a ≤ Θ ≤ b|x) ≈ log numeratorterm − log
Nl∑

ALL

exp(log numeratorterms). (3.12)

Equation (3.12) provides a numerical solution for directly computing the log-posterior

distribution that greatly reduces numerical precision issues. It is often more practical to

depict the actual posterior distribution, which can simply be accomplished by taking the

exponential of Equation (3.12). The posterior distribution can now be approximated as

p(a ≤ Θ ≤ b|x) ≈ exp

log numeratorterm − log
∑
ALL

exp(log numeratorterms)

 . (3.13)

Note that extremely small values will be represented as zero due to precision limitations.

However, the presented method still overcomes the divide by zero issues presented by direct

computation of the denominator.

3.2.1 Computation for the Sampling Case.

Since this chapter provides comparisons between the Gaussian-Quadrature integration

method and traditional PMF sampling methods, it is prudent to provide a numerical solution

for the sampled PMF case. Instead of integrating over sub-regions of the numerator of

the posterior distribution, we directly sample at user-defined intervals. Sampling methods

assume that the sampling interval is fine enough to produce a “good enough” solution.

Typically, the sampled PMF would then be normalized, such that it sums to one. However,
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the posterior distribution used in the presented research already contains a normalization

term in the denominator, so additional normalization is not required. We compute the

numerator for the sampled case as

log numeratorsampled ≈
−(x[n] − f (Θi))2

2σ2 + log(p(Θi)) + log(wi). (3.14)

Note that Equation (3.14) is simply the log of the numerator. We now apply the assumption

that the selected sampling interval is “good enough”, and following the same process the

Gaussian-Quadrature casse, the entire sampled posterior distribution can be computed as

log p(a ≤ Θ ≤ b|x) ≈ log numeratorsampled − log
∑
ALL

exp(log numeratorsampled), (3.15)

where “ALL” represents all of the sampled locations. Keep in mind that the implementation

shown in Equation (3.15) assumes uniform sample spacing. The final computation is the

same as performing a rectangular integration estimate.

3.3 Validation of Computation Method

Before proceeding further, it is imperative to provide a validation metric for the

computational method defined above. We implement the following validation process:

1. Generate a simple observation vector, with observations drawn directly from a

univariate normal distribution with known mean. To ensure that the estimated

parameters do not consistently align with the sampling interval, each mean is

randomly drawn from a uniform distribution between a = 2 and b = 8.

2. Apply three methods for PMF computation of the posterior distribution: analytic

computation using the closed form cumulative distribution function (CDF) of the

univariate normal distribution, computation using Gaussian-Quadrature integration

techniques, and computation using traditional sampling methods.
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3. Execute a Monte Carlo simulation. The simulation is iterated 10,000 times for

each combination of sampling intervals, integration polynomial order, and number

of observations. The cases are presented in Table 3.1.

4. Apply mean absolute error (MAE) to determine an average error between the MAP

of the posterior distribution and the true parameter value. We also apply the total

absolute error (TAE) metric to determine the total error between the true PMF

(generated using the CDF) and the quadrature/sampled distributions. The tabular

data shows TAE as the expected TAE, E[T AE].

A “true” solution is computed for the posterior distribution to provide a comparison

baseline. The true posterior distribution is computed using the error function, which is

precise up to double floating point precision (the computational limit for the workstations

implementing CSE).

We select a Monte Carlo length of 10, 000 realizations to support the validation process

presented above. The simulation contains sufficient realizations once the variance of each

metric converges on a single value. Figure 3.1 depicts the variance of the mean squared

error (MSE) vs number of realizations (for the N = 5000 observations case at 0.01 interval).

Note that the variance for each metric converges around 2,000 realizations. Therefore we

can conclude that 10,000 realizations used for the validation are more than sufficient.

Table 3.2 depicts sample data from the first 20 realizations of the Monte Carlo

simulation for the N = 1 observation at 1.0 interval case. Additional data samples are

located in the Appendix. Each row in Table 3.2 contains the results of one simulation,

including true parameter value (µ), MAP estimates (µ̂), and TAE. Table 3.3 depicts the

results of the validation process. Analysis of the results is divided into the following

sections: graphical method comparison, MAP error analysis, effects of quadrature order,

and effects of sampling interval.
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Table 3.1: Computation method validation scenarios. Graphical results for rows with
asterisks are presented in this chapter. Additional samples of data from each scenario can
be found in the Appendix.

Observations Interval Quadrature Order

1 1 3

∗1 1 5

1 1 11

1 0.1 5

1 0.01 5

5 1 5

5 0.1 5

5 0.01 5

50 1 5

50 0.1 5

50 0.01 5

500 1 5

500 0.1 5

500 0.01 5

5000 1 5

5000 0.1 5

5000 0.01 3

∗5000 0.01 5

5000 0.01 11
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Figure 3.1: Variance versus realizations for the validation simulations. Legendre
polynomial order Nl = 5, N = 5000 observations, 0.01 interval.
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Table 3.2: Sample Monte Carlo data from the N = 1 observation at 1.0 interval case. Data
includes the actual mean, µ, MAP estimates of the mean, µ̂, error between MAP and the true
mean, εµ̂ and TAE. Subscripts e, g, and s indicate error function computation, Gaussian-
Quadrature and sampling respectively. Additional samples of data from each scenario can
be found in the Appendix.

µ µ̂e µ̂g µ̂s εµ̂e εµ̂g εµ̂s T AEg T AEs

6.3861 7 7 7 0.61394 0.61394 0.61394 7.6491e-07 0.25532

6.4953 6 6 6 0.49532 0.49532 0.49532 1.4213e-06 0.26071

6.0176 6 6 6 0.01761 0.01761 0.01761 2.7533e-05 0.2594

6.2469 7 7 7 0.75307 0.75307 0.75307 2.3394e-05 0.30034

5.2109 5 5 5 0.21087 0.21087 0.21087 1.1269e-05 0.22228

6.6955 7 7 7 0.30452 0.30452 0.30452 1.6234e-05 0.20375

7.201 7 7 7 0.201 0.201 0.201 1.5209e-05 0.20778

7.714 8 8 8 0.28603 0.28603 0.28603 1.4878e-05 0.12619

7.671 8 8 8 0.32896 0.32896 0.32896 4.0393e-06 0.03323

6.241 6 6 6 0.24097 0.24097 0.24097 1.243e-05 0.10477

6.6375 7 7 7 0.36249 0.36249 0.36249 1.0067e-05 0.084403

6.9368 7 7 7 0.063236 0.063236 0.063236 2.7704e-05 0.28792

6.7631 7 7 7 0.23688 0.23688 0.23688 2.7608e-05 0.26093

7.6998 7 7 7 0.69984 0.69984 0.69984 4.1897e-06 0.26847

5.6838 6 6 6 0.31624 0.31624 0.31624 1.5742e-05 0.20569

5.2989 6 6 6 0.70112 0.70112 0.70112 1.8191e-05 0.15596

5.7187 6 6 6 0.28126 0.28126 0.28126 2.803e-05 0.27429

5.8683 6 6 6 0.13168 0.13168 0.13168 2.7864e-05 0.26724

5.9294 6 6 6 0.070595 0.070595 0.070595 9.9202e-07 0.25467

5.0678 5 5 5 0.067777 0.067777 0.067777 5.6491e-06 0.24084

5.6006 6 6 6 0.39943 0.39943 0.39943 1.4934e-06 0.011785
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Table 3.3: Statistical data for the validation process. Data includes the number of
observations, interval, Gauss-Legendre polynomial order (Nl), MAE, and expected TAE
(E[T AE]). Subscripts e, g, and s indicate error function computation, Gaussian-Quadrature
and sampling respectively.

# Obs. Int. Nl MAEe MAEg MAEs E[T AEg] E[T AEs]

1 1 3 0.34989 0.34989 0.34989 0.0016934 0.22549

1 1 5 0.34421 0.34421 0.34421 1.5266e-05 0.22777

1 1 11 0.34052 0.34052 0.34052 3.2251e-14 0.22786

1 0.1 5 0.25519 0.25519 0.25519 4.4549e-15 0.0040228

1 0.01 5 0.25285 0.25285 0.25285 1.9682e-14 4.0327e-05

5 1 5 0.26829 0.26829 0.26829 0.001384 0.16794

5 0.1 5 0.11494 0.11494 0.11494 1.0357e-11 0.019926

5 0.01 5 0.11377 0.11377 0.11377 5.2196e-14 0.00020162

50 1 5 0.25091 0.25091 0.25091 0.012431 0.066141

50 0.1 5 0.042495 0.042495 0.042495 3.1179e-07 0.17388

50 0.01 5 0.03572 0.03572 0.03572 3.8447e-14 0.0020139

500 1 5 0.24875 0.24875 0.24875 0.016555 0.022144

500 0.1 5 0.027314 0.027314 0.027314 0.0013885 0.1694

500 0.01 5 0.011432 0.011432 0.011432 1.0355e-11 0.019904

5000 1 5 0.24962 0.24962 0.24962 0.0080092 0.0088198

5000 0.1 5 0.025262 0.025262 0.025262 0.0126 0.064866

5000 0.01 3 0.0042946 0.0042946 0.0042946 0.00029287 0.17263

5000 0.01 5 0.004306 0.004306 0.004306 3.1338e-07 0.17319

5000 0.01 11 0.0042444 0.0042444 0.0042444 1.7014e-12 0.17387
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3.3.1 Graphical Method Comparison.

This subsection provides graphical comparison of the sampled and Gaussian-

Quadrature methods. Figures 3.2 and 3.3 depict posterior distributions for the two scenarios

with asterisks listed in Table 3.1 (additional results can be found in the Appendix). Notice

that the Gaussian-Quadrature integration method provides a significantly more accurate

solution than the sampling method when compared against the error function computation.

The results in the following subsections indicate a significant increase in accuracy for the

posterior distribution when computed using Gaussian-Quadrature integration techniques.

Figure 3.2: Validation results for N = 1 observation at 1.0 interval. The red outlines are
the distribution as computed with the error function, the white boxes are the distribution
generated using the Gaussian-Quadrature method, and the blue/black stems are the
distribution generated using the sampling method. Note that the true mean is the actual
parameter of the drawn distribution.
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(a) Full distribution.

(b) Zoomed region 6.2 ≤ Θ ≤ 6.5.

Figure 3.3: Validation results for N = 5000 observation at 0.01 interval. The red
outlines are the distribution as computed with the error function, the white boxes are the
distribution generated using the Gaussian-Quadrature method, and the blue/black stems are
the distribution generated using the sampling method. Note that the true mean is the actual
parameter of the drawn distribution.

3.3.2 MAP and Distribution Error Analysis.

Table 3.3 contains various metrics for comparing quadrature and sampled methods.

The MAE metric is computed as

MAE =

∑N
n=1 |µ − µ̂n|

N
, (3.16)
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where N is the total number of data points, µ is the true parameter value, and µ̂ is the MAP

estimate. Table 3.3 also includes TAE, which is computed as

T AE =
∑

ALLΘ

|p(Θ|x)1 − p(Θ|x)2| , (3.17)

where p(Θ|x)1 and p(Θ|x)2 are the two distributions being compared.

The data in Table 3.3 demonstrates that the MAE is identical for each method, showing

that using the MAP parameter set determined by the CSE provides the same solution as the

sampling method. The similarity in performance is due to the cost function and sampling

interval. Recall the cost function for MAP estimators, defined as

C(ε) = C(µ − µ̂), (3.18)

where µ̂ is the closest discrete parameter [6]. Since the MAP is computed from the center

of the search bin, the resulting estimates are the same for both the CSE and traditional

sampling methods. In terms of a sole MAP estimator, it would not be beneficial to apply

Gaussian-Quadrature methods. However, application of CSE is intended for scenarios

when retaining the entire distribution is desirable. The next section shows that traditional

sampling induces significant errors in the posterior distribution.

3.3.3 Posterior Distribution Error Analysis.

The data in Table 3.3 shows that the expected TAE is significantly lower in all cases

for the Gaussian-Quadrature method than the sampling method. The Gaussian-Quadrature

method also produces lower error, regardless of the number of observations or sampling

interval. On average, the sampling method produces 6.43e10 times more error than the

Gaussian-Quadrature method. In addition, an error of 0.2277 (row 2, Table 3.3) for a

posterior distribution is quite significant given that the distribution sums to one.

3.3.4 Effects of Sampling Interval.

The data in Table 3.3 provides some insight into CSE performance as the sampling

interval varies. As mentioned previously, MAP estimates provided by the CSE are more
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precise as the space is sampled more finely. The precision increases at the same rate

as the sampling method because MAP performance depends on sampling interval, as

shown in Equation (3.18). Performance in terms of expected TAE demonstrates in some

interesting findings. In every case, the CSE implementation using Gaussian-Quadrature

techniques results in smaller expected TAE than the sampling method. Note that the CSE

implementation produces more accurate posterior distribution estimates as the sampling

interval varies from coarse to fine in every case but the N = 5000 at 0.1 interval case.

However, the expected TAE still increases as the sampling interval varies from coarse to

fine. The next section shows that larger quadrature polynomials can overcome the increase

in error. However, the sampling method does not share the same accuracy improvement.

In most cases, the sampling method performs better with finer sampling interval. However,

notice that the error associated with finest sampling interval for the N = 5000 observations

case greatly increases. Recall Figure 3.3 and note that the general shape of the distribution

is much different for the sampling method than the quadrature integration method. As

the results of this thesis are presented, it will become apparent that using a finer sampling

interval does not result in the same shaped distributions when comparing against quadrature

integration. As a result, decreasing the sampling interval typically produces more TAE for

the sampling method in cases with very narrow distributions, as is the case with large

numbers of observations.

3.3.5 Effects of Quadrature Order.

Recall Equation (3.13) and notice that as the number of observations increases, the

width of the distribution will decrease due to the summation term in the exponential.

Referring to Table 3.3, note that as the number of observations increases, the accuracy

of the CSE implementation decreases. While the CSE produces more accurate estimates

of the posterior distributions (compared to sampling methods), it is desirable to explore

the possibility of maintaining the same accuracy by varying the order of the integration
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polynomial. Maintaining accuracy becomes increasingly important in the case of SAR

canonical models, where the number of observations in phase history can easily exceed

7,300.

Consider the N = 1 observation at 1.0 interval case. Notice that the expected TAE

decreases significantly as the polynomial order is increased from Nl = 3 to Nl = 11.

Comparing to the sampling case, note that a polyomial of order Nl = 3 is likely sufficient

to estimate the posterior distribution. Now, consider the N = 5000 case, recalling that the

increase in number of observations results in a much narrower posterior distribution. Again,

increasing the integration polynomial order results in a more accurate representation of the

posterior distribution. Note that the increase in accuracy comes at a computational cost as

the Nl = 11 polynomial results in more than double the computations when compared to

Nl = 5. It is especially important to consider the computational cost for multi-dimensional

distributions as the complexity exponentially increases with the number of computations.

In order to balance the computational complexity while still producing accurate posterior

distributions, we select an integration polynomial of Nl = 5 for the remainder of the

results presented in this thesis. Chapter 4 will show that using a higher order integration

polynomial makes implementation of CSE computationally impractical.

3.4 Determining the Credible Set

Parameter ambiguities can lead to multiple peaks in the output posterior distribution.

The sinusoidal signal leads to multiple peaks of equal probability for the phase estimate,

which creates issues for MAP style estimators (there is no intuitive way to pick the

maximum peak). In many cases, noise leads to one peak that contains marginally more

probability than the others. Traditional MAP estimators would just accept this peak as the

solution. However, running the estimator on multiple realizations of the same signal would

demonstrate “hopping” parameters, indicating that multiple “credible” solutions exist.
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The CSE retains these peaks, as well as the entire PMF. The CSE then determines

the region in which the total probability equals a user-defined confidence level. For the

purposes of this thesis, a confidence level of 90% will be used.

3.5 Parameter Estimation and Priors

The PMFs presented in this chapter are generated by implementing the CSE in

MATLAB. The results presented are two-parameter PMF estimates after applying the CSE

on simple test signals (DC ramp and sinusoid). The following subsections will detail

the results of applying the CSE to each test signal. Results are generated for posterior

PMFs which are discretized at 1, 0.1 and 0.01 intervals. All quadrature distributions

were generated using a legendre polynomial of order Nl = 5. The validation section,

Section 3.3, has shown that these parameters result in a very accurate computation of

the posterior distribution. As such, the TAE metrics presented in the following sections

directly compare the distributions generated with the quadrature method and the sampling

method. Since no closed form solution exists for the DC ramp and sinusoidal signals, the

following sections accept the posterior distributions generated by the quadrature method as

the correct distributions. This chapter will close with a table containing parameter estimates

and associated errors.

3.5.1 Simple DC Ramp.

Here, we demonstrate the CSE on a multiple parameter estimate of the signal

x[n] = An + B + w[n], (3.19)

where A and B are the signal parameters, and w[n] is a vector containing WGN with

variance σ2. For this case, the resulting likelihood function is

p(x|A, B) =
1

(2πσ2)
N
2

exp

− 1
2σ2

N∑
n=1

(x[n] − An − B)2

 . (3.20)

Bayes’ Rule is applied using Equation (3.20) and a uniform prior. The resulting

posterior distributions are depicted in Figures 3.4 and 3.5. Notice that a traditional MAP
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style estimator would likely result in the correct solution, since the distribution only

contains one peak. The credible region for the simple DC signal case corresponds to the

MAP estimate of the parameters. Notice the drastic difference in shape between the two

distributions, especially at the finest zoom level. Since the quadrature method has been

demonstrated to provide more accurate representations of the distributions, we can assume

that the sampling method has induced significant error in the distribution. The tabular

results section at the end of this chapter further depicts the error.
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(a) Posterior distribution and credible set at 1.00 interval.

(b) Posterior distribution and credible set at 0.10 interval.

(c) Posterior distribution and credible set at 0.01 interval.

Figure 3.4: Left: PMFs for the multiple parameter estimate of An + B using uniform priors.
Parameters used are A = 5, B = 0 and N = 50. Right: Resulting 90% credible regions.

35



(a) Marginal distribution at 1.00 interval.
—

(b) Marginal distribution at 0.10 interval.

(c) Marginal distribution at 0.01 interval.

Figure 3.5: Marginal PMFs for the multiple parameter estimate of An + B using uniform
priors. Parameters used are A = 5, B = 0 and N = 50.
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3.5.2 Sinusoidal Signal.

Sinusoidal signals are an interesting case because of the cyclical nature of the phase

term. The signal demonstrated here is x[n] = cos(2πAn + B), where A is an unknown

frequency, and B is an unknown phase offset. A uniform prior distribution (centered on the

true value, with width = 2) is initialized, and the PMF is computed according to Equation

(3.13). The results are depicted in Figures 3.6 and 3.7. Notice in these figures a traditional

MAP style estimator would likely not result in the correct solution. The credible set for the

cosine case shows that multiple credible solutions exist. A typical MAP estimator would

likely result in “hopping” solutions from realization to realization. Again, notice the drastic

difference in shape between the two distributions, especially at the finest zoom level. Since

the quadrature method has been demonstrated to provide more accurate representations of

the distributions, we can again assume that the sampling method has induced significant

error in the distribution.

37



(a) Posterior distribution and credible set at 1.00 interval.

(b) Posterior distribution and credible set at 0.10 interval.

(c) Posterior distribution and credible set at 0.01 interval.

Figure 3.6: Left: PMFs for the multiple parameter estimate of cos(2πA + B) using uniform
priors. Parameters used are A = 5, B = 0 and N = 50. Right: Resulting 90% credible
regions. Note: interval size decreases from top to bottom.
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(a) Marginal distribution at 1.00 interval.

(b) Marginal distribution at 0.10 interval.

(c) Marginal distribution at 0.01 interval.

Figure 3.7: Marginal PMFs for the multiple parameter estimate of cos(2πAn + B) using
uniform priors. Parameters used are A = 5, B = 0 and N = 50.
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3.6 Selection of Priors

Selection of priors can significantly impact the performance of the estimator. For

the purposes of this thesis, three different prior distributions are considered: uniform,

Gaussian (normal) and Rayleigh. It is useful to demonstrate prior selection on a sinusoidal

signal, as estimating the phase results in a cyclical response in the likelihood function, as

demonstrated in Figure 3.6.

3.6.1 Multi-Dimensional Priors.

Prior to presenting the results of prior selection, it is pertinent to define how multi-

dimensional priors are intialized in this thesis. For the purposes of this thesis, signal

parameters are considered to be independent. That is, the value of each parameter does

not rely on the value of another. This assumption significantly simplifies the generation of

multi-dimensional priors, and matches well with the canonical feature models used in the

next chapter (parameters such as size, orientation and location are independent). As such,

multi-dimensional priors are defined as a vector of distributions, shown as

f (Θ) = f (Θ1,Θ2, . . . ,ΘN), (3.21)

where Θ1,Θ2, . . . ,ΘN are prior distributions for each parameter.

3.6.2 Uniform Priors.

The uniform distribution is desirable both because of its simplicity to implement,

and because it provides finite integration bounds for the posterior distribution in the

denominator of Equation (2.1) [15], and is shown as

f (Θ) =
1

B − A
, (3.22)

where A and B are the chosen end points. Initializing the uniform prior proves to be an

issue, however, as the canonical feature estimators used in this thesis [4, 13] provide only

one estimated value. For the purposes of this research, we center the distribution on the
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true value using the equation for the mean of the uniform distribution, defined as

µ =
1
2

(A + B). (3.23)

It is clear that infinitely many combinations of A and B can be selected to result in the same

mean. As such, initialization of uniform priors requires the user to select the width of the

distribution. For the purposes of this thesis, arbitrary values of A = µ − 1 and B = µ + 1

were selected.

Figure 3.6 depicts the resulting PMF when the sinusoidal signal is estimated using

uniform priors. The uniform distribution is bounded such that only three peaks remain. An

unbounded uniform distribution would have resulted in repeated peaks indefinitely. The

uniform distribution is useful in applications where multiple credible regions occur, but

should be weighted the same.

3.6.3 Normal Priors.

The Gaussian (normal) distribution is desirable because it is parameterized by two

moments, which enables tailoring of the prior to a desired outcome [15]. The Gaussian

distribution is defined as

f (Θ) =
1

σ
√

2π
e−

(Θ−µ)2

2σ2 , (3.24)

where µ is the mean, and σ is the variance. Similar to the uniform case, only one

initialization value is provided by traditional estimators. The variance must be selected

by the user, enabling the user to choose whether emphasis should be placed on the

likelihood estimate or on the moment estimate for the prior. Selecting small variance places

more emphasis on initialization value, whereas large variance emphasizes the likelihood

estimate. For the purposes of this thesis, the mean is initialized as the true value, an

arbitrary value of variance, σ = 1 is selected.

Figure 3.8 depicts the resulting PMF when the sinusoidal signal is estimated using

Gaussian priors. Figure 3.9 contains the resulting marginal distributions. Notice that five

peaks remain (compared to using an unbounded prior distribution), however the peaks
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reduce in amplitude as the parameters deviate from the true value. Implementing normal

priors is desirable in cases where one peak should be emphasized, but it is undesirable to

discard other possibilities.
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(a) Posterior distribution and credible set at 1.00 interval.

(b) Posterior distribution and credible set at 0.10 interval.

(c) Posterior distribution and credible set at 0.01 interval.

Figure 3.8: Left: PMFs for the multiple parameter estimate of cos(2πAn + B) using normal
priors. Parameters used are A = 5, B = 0 and N = 50. Right: Resulting credible regions.
Note: interval size decreases from top to bottom.
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(a) Marginal distribution at 1.00 interval.

(b) Marginal distribution at 0.10 interval.

(c) Marginal distribution at 0.01 interval.

Figure 3.9: Marginal PMFs for the multiple parameter estimate of cos(2πAn + B) using
normal priors. Parameters used are A=5, B=0 and N=50.
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3.6.4 Rayleigh Priors.

The Rayleigh distribution is desirable because it is parameterized by a single

parameter, which can be traced back to the mean of the distribution [15]. The Rayleigh

distribution is defined as

f (Θ) =
Θ

σ2
r
e
− Θ2

2σ2
r , (3.25)

where σr is the scaling parameter. The Rayleigh distribution also has the unique property

in which the variance and mean are coupled to the same parameter, resulting in a narrower

distribution as the mean value decreases. The coupling is useful for the CSE, as estimates of

the mean value are weighted more in the final PMF when the value is smaller. The coupling

will prove useful in size estimates of canonical features, as it is more likely that an object

in the scene is small relative to the scene size. One drawback to the Rayleigh distribution

is that it is undefined at σr = 0, making the distribution unsuitable for parameters that can

contain zero. Figures 3.10 and 3.11 depict the resulting PMF when the sinusoidal signal

is estimated using Rayleigh priors. Notice that multiple peaks remain (compared to using

an unbounded prior distribution), however the peaks reduce in amplitude as the parameters

deviate from the true value. This reduction is desirable in cases where one peak should be

emphasized, but it is undesirable to discard other possibilities. Notice that the 90% region

still includes two, disjoint regions. Setting a flag in the CSE can force the estimator to treat

this large region, as two separate, disjoint regions.
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(a) Posterior distribution and credible set at 1.00 interval.

(b) Posterior distribution and credible set at 0.10 interval.

(c) Posterior distribution and credible set at 0.01 interval.

Figure 3.10: Left: PMFs for the multiple parameter estimate of cos(2πAn + B) using
Rayleigh priors. Parameters used are A = 5, B = 0 and N = 50. Right: Resulting 90%
credible regions. Note: interval size decreases from top to bottom.
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(a) Marginal distribution at 1.00 interval.

(b) Marginal distribution at 0.10 interval.

(c) Marginal distribution at 0.01 interval.

Figure 3.11: Marginal PMFs for the multiple parameter estimate of cos(2πAn + B) using
Rayleigh priors. Parameters used are A=5, B=0 and N=50.

47



3.6.5 Large Observation Vectors.

Applying the CSE with large observation vectors provides higher confidence levels

at the cost of increased numerical precision requirements. Computing the PMF as shown

in Equation (3.13) resolves the precision requirements issue, thus providing the benefit

of multiple observations while minimizing the risk of data overflow. Figures 3.12, 3.13

3.14 and 3.15 show the results of applying the CSE to both the DC signal and sinusoidal

signal, using an observation vector with length N = 5000. This value was selected as it is

of the same order as the observation vector used for the canonical features phase history

examples shown in the next chapter. Notice that the PMFs contain significantly narrower

peaks than the cases with few observations, which can cause the estimator to miss the

region of probability. When this occurs, reducing the interval size or increasing the legendre

polynomial order can alleviate the problem. Again, notice the drastic difference in shape

between the two distributions, especially at the finest zoom level. We can assume that the

sampling method has induced significant error in the distribution.
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(a) Posterior distribution and credible set at 1.00 interval.

(b) Posterior distribution and credible set at 0.10 interval.

(c) Posterior distribution and credible set at 0.01 interval.

Figure 3.12: Left: PMFs for the multiple parameter estimate of An + B. Parameters used
are A = 5, B = 0 and N = 5000. Right: Resulting 90% credible regions. Note: interval
size decreases from top to bottom.
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(a) Marginal distribution at 1.00 interval.

(b) Marginal distribution at 0.10 interval.

(c) Marginal distribution at 0.01 interval.

Figure 3.13: Marginal PMFs for the multiple parameter estimate of An + b. Parameters
used are A = 5, B = 0 and N = 5000.
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(a) Posterior distribution and credible set at 1.00 interval.

(b) Posterior distribution and credible set at 0.10 interval.

(c) Posterior distribution and credible set at 0.01 interval.

Figure 3.14: Left: PMFs for the multiple parameter estimate of cos(2πAn + B). Parameters
used are A = 5, B = 0 and N = 5000. Right: Resulting credible regions. Note: interval
size decreases from top to bottom.
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(a) Marginal distribution at 1.00 interval.

(b) Marginal distribution at 0.10 interval.

(c) Marginal distribution at 0.01 interval.

Figure 3.15: Marginal PMFs for the multiple parameter estimate of cos(2πAn + B).
Parameters used are A = 5, B = 0 and N = 5000.
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3.6.6 Tabular Results.

Here we present the results which contrast the CSE Gaussian-Quadrature implemen-

tation with the traditional sampling method. Here, we use the total absolute error for the

entire posterior distribution, computed as T AE =
∑

ALLΘ

∣∣∣p(Θ|x)s − p(Θ|x)q

∣∣∣. We directly

compare the quadrature method against the sampling method, under the assumption that

the quadrature method has produced a more accurate posterior distribution (following the

results of the validation section at the start of this chapter).

Tables 3.4 and 3.5 depict the results of the error analysis study. Notice that the TAE

varies greatly depending on the interval. As with the validation results presented in Section

3.3, the TAE reduces in most cases as the interval is made finer, from 1.0 to 0.1 to 0.01.

However, significant error is still present even at the finest zoom interval (note that in most

cases the error is on the order of 10−1). Also note that on a few occasions the TAE is as high

as 2 (see An + B, Rayleigh, N = 500, Interval = 0.10) and other cases showing TAE around

1.11 (see cosine, Normal, N = 500, Interval = 0.1). The maximum TAE for a probability

distribution is T AE = 2, implying that the sampling method when applied to real signals

can result in a completely incorrect representation of the posterior distribution.

Finally, the entries labelled “NaN” are scenarios where the sampling method

completely missed the region containing probability. The result is a distribution where

the total probability is equal to zero, meaning the sampling interval was too coarse. The

additional samples used in Gaussian-Quadrature integration alleviate this issue, enabling

the CSE to extract the distribution when the sampling method cannot.
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Table 3.4: Tabular results for signal An + B. Rows with TAE showing “NaN” are iterations
where the sampling method missed the region containing probability.

Signal Prior N Interval TAE

An + B Uniform 50 1.00 6.97e-34

An + B Uniform 50 0.10 2.81e-01

An + B Uniform 50 0.01 1.44e+00

An + B Uniform 500 1.00 1.42e-320

An + B Uniform 500 0.10 1.20e-03

An + B Uniform 500 0.01 6.05e-01

An + B Uniform 5000 1.00 0.00e+00

An + B Uniform 5000 0.10 2.92e-38

An + B Uniform 5000 0.01 7.68e-02

An + B Normal 50 1.00 2.19e-35

An + B Normal 50 0.10 1.89e-01

An + B Normal 50 0.01 1.20e+00

An + B Normal 500 1.00 0.00e+00

An + B Normal 500 0.10 1.91e-06

An + B Normal 500 0.01 6.08e-01

An + B Normal 5000 1.00 0.00e+00

An + B Normal 5000 0.10 1.12e-36

An + B Normal 5000 0.01 1.26e-01

An + B Rayleigh 50 1.00 NaN

An + B Rayleigh 50 0.10 2.00e+00

An + B Rayleigh 50 0.01 7.37e-01

An + B Rayleigh 500 1.00 NaN

An + B Rayleigh 500 0.10 2.00e+00

An + B Rayleigh 500 0.01 7.03e-01

An + B Rayleigh 5000 1.00 NaN

An + B Rayleigh 5000 0.10 2.00e+00

An + B Rayleigh 5000 0.01 7.71e-01
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Table 3.5: Tabular results for signal cos(2πAn + B). Rows with TAE showing “NaN” are
iterations where the sampling method missed the region containing probability.

Signal Prior N Interval TAE

cos(2πAn + B) Uniform 50 1.00 2.11e-03

cos(2πAn + B) Uniform 50 0.10 5.61e-01

cos(2πAn + B) Uniform 50 0.01 5.81e-01

cos(2πAn + B) Uniform 500 1.00 1.71e-13

cos(2πAn + B) Uniform 500 0.10 8.08e-01

cos(2πAn + B) Uniform 500 0.01 8.56e-01

cos(2πAn + B) Uniform 5000 1.00 1.20e-243

cos(2πAn + B) Uniform 5000 0.10 4.69e-01

cos(2πAn + B) Uniform 5000 0.01 8.49e-01

cos(2πAn + B) Normal 50 1.00 1.45e-04

cos(2πAn + B) Normal 50 0.10 7.27e-01

cos(2πAn + B) Normal 50 0.01 8.74e-01

cos(2πAn + B) Normal 500 1.00 5.78e-12

cos(2πAn + B) Normal 500 0.10 1.11e+00

cos(2πAn + B) Normal 500 0.01 1.04e+00

cos(2πAn + B) Normal 5000 1.00 7.32e-218

cos(2πAn + B) Normal 5000 0.10 9.17e-01

cos(2πAn + B) Normal 5000 0.01 9.22e-01

cos(2πAn + B) Rayleigh 50 1.00 NaN

cos(2πAn + B) Rayleigh 50 0.10 1.96e+00

cos(2πAn + B) Rayleigh 50 0.01 3.08e-01

cos(2πAn + B) Rayleigh 500 1.00 NaN

cos(2πAn + B) Rayleigh 500 0.10 1.96e+00

cos(2πAn + B) Rayleigh 500 0.01 3.02e-01

cos(2πAn + B) Rayleigh 5000 1.00 NaN

cos(2πAn + B) Rayleigh 5000 0.10 1.96e+00

cos(2πAn + B) Rayleigh 5000 0.01 3.03e-01
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IV. PMF Extraction using Canonical Feature Models

Chapter 4 serves as an extension to the theory presented in Chapter 3. The current

chapter focuses on application of the CSE to SAR phase history data, specifically focusing

on canonical feature models [5]. The focus will be on estimator performance in terms of

parameter estimation. The data presented is the result of applying the CSE to SAR scenes

containing simulated phase history data of the canonical features.

4.1 Key Assumptions

• Received signals contain only a signal of interest and additive white Gaussian noise.

This assumption is required by application of the univariate normal distribution as

the likelihood function.

• Parameters are considered to be independent. This assumption is required in order to

initialize prior distributions without a covariance matrix. Also, the parameters used

for 3-D canonical features (size, location, orientation) are independent.

• Prior distributions are finitely bounded. This assumption makes numerically

computing the denominator in the posterior distribution possible.

• Shape type is known a priori. The shape type must be known in advance so the CSE

can apply the appropriate signal model based on Jackson’s 3-D canonical features

[4, 5]. It is possible to estimate shape type using methods such as spectrum parted

linked image test (SPLIT) [16]. However, for the purposes of this thesis it is assumed

that the shape type is already known.

4.2 Credible Set Estimator and Canonical Features

Applying the CSE to canonical feature models requires a few additions to the basic

CSE algorithm presented in the previous chapter. The additions include generation
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of canonical feature model phase history, flight path selection, adapting the estimator

to representative frequencies, and initialization of canonical feature specific prior

distributions.

4.2.1 Computation Method.

The computational method for canonical features follows the same form as the simple

signals presented in the previous chapter. The likelihood function in the canonical feature

model case is computed as

p(x|Θ) =
1

(2πσ2)
N
2

exp

− 1
2σ2

N−1∑
n=0

(x[n] − S n(Λ,Θ))2

 , (4.1)

where S n(Λ,Θ) is the canonical feature model containing parameters Θ computed along

flight path Λ. Computation of Equation (4.1) requires that the shape type be known in

advance in order to apply the correct feature model. The remainder of the calculation of

the posterior distribution follows the derivation presented in the previous chapter.

4.2.2 Algorithm.

Application of the CSE to canonical features requires the following modifications to

the estimator presented in Chapter 3:

• Prior distributions are initialized to match the specific shape and parameters to be

estimated (for example, the sphere has a radius, but not length or height). The

following sections detail how the prior distributions are initialized in the presented

research.

• The shape type is determined in advance. It is possible to use the SPLIT algorithm

to determine what shape types are present in a scene [16]. For the purposes of the

current chapter, it is assumed that the shape type is known a priori, without using

SPLIT.

The algorithm as implemented in this chapter is presented in Figure 4.1.
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Figure 4.1: Flowchart depicting the CSE implementation for use with canonical features.
Red box indicates parallel process. Dashed blue box indicates updates to Rademacher’s
algorithm.

4.2.3 Simulation Parameters.

Table 4.1 details the parameters used in the presented simulations. We choose the

parameters to closely align with previous research as well as to simulate a SAR scene that

is representative of real-world radar systems. We implement CSE on a scene using “HH”

polarization. It is possible to use all polarization types (HH,VV,HV), however this results

in three times as many observations.

Table 4.1: Radar parameters used in the canonical features CSE implementation.

Parameter Value

Center Frequency ( f0) 300 MHz

Bandwidth (BW) 100 MHz

Flight Path Varies by shape

Number of Frequency Bins 128

Signal-to-Noise Ratio 30 dB

Polarization HH

Prior Uniform(Θ − 1,Θ + 1)

58



4.2.4 Flight Path Selection.

Crosser [4] presented a method of flight path selection for canonical feature extraction.

Shapes such as the top-hat and plate require sufficient azimuth and elevation diversity

to determine the correct specular response [4]. Crosser presents three flight paths with

sufficient azimuth and elevation diversity to estimate each feature reliably. Each flight path

consists of two segments. Figure 2.4 depicts the three flight paths. Table 4.2 depicts the

association between features and flight paths. The up-down flight path is used to estimate

the plate, dihedral and trihedral as it provides coverage for specular response. The disjoint

flight path is used to estimate the sphere and top-hat as it provides the best radius estimate.

Finally, the two-pass flight path is used to estimate the cylinder as it provides limited

specular response along the azimuth while providing sufficient diversity in elevation for

the radius estimate.

Table 4.2: Flight paths used for canonical feature estimation.

Up-down Disjoint Two-pass

Plate X

Dihedral X

Trihedral X

Sphere X

Cylinder X

Top-Hat X

4.2.5 Prior Distribution Initialization.

The presented research considers a simple set of uniform prior distributions. The

key assumption when initializing the prior distributions is that the M parameters are

independent, effectively making the total distribution a M-th dimensional product of the

marginal distributions. The application of prior distributions used in this thesis is a simple
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case in which all marginal distributions are defined as uniform distributions. Utilizing

all uniform distributions is ideal when no prior knowledge of associated probabilities

is available. Also, the uniform distribution can be tailored by the user to adjust the

finite bounds of the posterior distribution, matching well with the key assumptions of

the presented research. For the presented results, the prior distribution is defined as

Uniform(Θ − 1,Θ + 1).

4.3 Test Scenes

The presented research focuses on seven test scenes utilizing each of the canonical

features. The presented test scenes are selected to maintain continuity with previous

publications [4, 5, 13]. Table 4.3 details the test scenes and associated parameters. Two

search intervals are selected for each scene: coarse (0.5m) and fine (0.25m).

Table 4.3: Canonical feature test scenes.

Shape X (m) Y (m) Z (m) L (m) H (m) r (m) Roll (deg) Pitch (deg) Yaw (deg)

Plate -0.30 0 0.30 0.60 0.30 - 0 -30 0

Dihedral 1 0.25 0.50 0 0.60 0.20 - 0 0 0

Dihedral 2 0 1.10 2.50 0.60 0.30 - -10 0 0

Trihedral 0.75 0 0.50 - 0.18 - 0 0 0

Sphere -1.50 -1.00 0 - - 0.75 0 0 0

Cylinder 0.50 2.00 0 0.50 - 1.50 0 0 -5

Top Hat 0.25 -1.50 0 - 0.40 0.60 0 0 0

4.3.1 Computational Complexity.

Extension of the CSE to M-th order parameter estimates results in significant

computational requirements. The computation of each parameter permutation for phase

history vector of length N includes: generation of test phase history data for that

permutation using N absolute values, 2N exponential calculations, and 4N add-multiplies.
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The total computations required for all parameter permutations becomes

#computations = NM
l

M∏
m=1

Θi, (4.2)

where Nl is the order of the Legendre polynomial used for Gauss-Quadrature integration,

M is the number of parameters to be estimated, and Θi is the number of grid points along

each dimension to be evaluated. On a 64-bit machine, the resulting memory requirements

to store the posterior distribution as a double precision floating point becomes

MEMORY = 16
M∏

m=1

Θibytes. (4.3)

In order to estimate five parameters, where each parameter is sampled at 50 points requires

5GB of memory to store the posterior distribution. Increasing this to six parameters

would require 250GB of memory, making direct computation of the posterior distribution

impossible on current computers.

4.4 Results and Discussion

The following subsections detail the results of the CSE when applied to canonical

features. The first subsection presents the data in a tabular format, while the following

subsections present the data in graphical form. Note, the posterior distributions are

presented as marginal distributions in order to visualize the M dimensional probability

space. For all figures, the bars represent the posterior distribution estimated using CSE,

and the red stems represent the true parameter values. Tick marks on the X-axis indicate

regions in the search space where zero probability was found. Table 4.1 details the radar

parameters used to generate the results in this section.

4.4.1 Tabular Results.

Table 4.4 contains tabular results for the CSE implementation using canonical features.

We present the MAP values for each parameter to compare against the true parameters.

Analysis and discussion for each scene is discussed in the sections below.
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Table 4.4: Tabular results for the canonical feature test scenes. Data includes shape, interval
(Int.), true parameter value (X,Y ,etc.) and MAP estimate for each parameter (X̂,Ŷ ,etc.).

Shape Int. X(m) X̂(m) Y(m) Ŷ(m) Z(m) Ẑ(m) L(m) L̂(m) H(m) Ĥ(m) r(m) r̂(m)

Plate 0.5 -0.30 -0.25 0 -0.25 0.30 0.25 0.60 0.75 0.30 0.25 - -

0.25 -0.30 -0.375 0 -0.125 0.30 0.375 0.60 0.625 0.30 0.375 - -

Dihedral 1 0.5 0.25 0.25 0.50 0.25 0 0.25 0.60 0.25 0.20 0. 25 - -

0.25 0.25 0.375 0.50 0.375 0 -0.125 0.60 0.625 0.20 0.375 - -

Dihedral 2 0.5 0 0.75 1.10 1.25 2.50 1.25 0.60 0.75 0.30 0.25 - -

0.25 0 1.125 1.10 1.125 2.50 1.125 0.60 0.625 0.30 0.375 - -

Trihedral 0.5 0.75 0.75 0 -0.25 0.50 0.25 - - 0.18 All - -

0.25 0.75 0.625,0.875 0 -0.125 0.50 0.375,0.625 - - 0.18 0.375 - -

Sphere 0.5 -1.50 -1.25 -1.00 -1.25 0 0.75 - - - - 0.75 0.75

0.25 -1.50 -1.625 -1.00 -1.125 0 0.875 - - - - 0.75 0.375

Cylinder 0.5 0.50 -0.25 2.00 2.25 0 0.25 0.50 0.75 - - 1.50 1.75

0.25 0.50 0.125 2.00 2.125 0 0.125 0.50 0.625 - - 1.50 1.625

Top Hat 0.5 0.25 0.25 -1.50 -1.25 0 0.25 - - 0.40 0.25 0.60 0.75

0.25 0.25 -1.50 0 - - 0.40 0.60

4.4.2 Plate.

The plate scene represents an “ideal” application of the CSE. Notice from Table 4.4

that the MAP estimates all fall within half of a search interval, aligning with the expected

bias shown in Chapter 3. Figures 4.2 and 4.3 depict the marginal PMFs for the plate scene.

Notice that the MAP estimates for each parameter contain the true value except the length at

coarse zoom. The error here is corrected when zoomed into the fine level, shown in Figure

4.3. The initial error likely occurs because the true value falls almost directly between

search bins, and noise has induced bias on the estimator. The result is the CSE selecting the

search bin associated with L = 0.25m. However, note that the true value is still contained

in the credible set, as the 90% set contains both the 0.25m and 0.75m search bins.
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Figure 4.2: Marginal PMFs for the plate scene at coarse zoom.
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Figure 4.3: Marginal PMFs for the plate scene at fine zoom.
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4.4.3 Dihedral 1.

The first dihedral scene presents some interesting results in the application of the CSE.

Notice from Table 4.4 that the MAP estimates all fall within half of a search interval, again

aligning with the expected bias. Figures 4.4 and 4.5 present the marginal distributions for

the first dihedral scene. Note that the marginal distribution for height shows that all values

are equally as likely. Recall the amplitude term for the dihedral [5], shown as

MΓm(k,Λ;Θm) =
jk
√
π

Asinc(kL sin φ̃ cos θ̃) ×
{

sin θ̃; θ̃ ∈ [0, π4 ]

cos θ̃; θ̃ ∈ [ π4 ,
π
2 ]

}
; φ̃ ∈ [−

π

2
,
π

2
], (4.4)

where A = 2LH. Notice that the height term only exists as a scaling factor for the sinc.

For the bistatic case, there is an additional sinc term containing H, which makes estimating

height possible (see [5]). As such, it is impossible to directly estimate the height term for

a dihedral using the CSE in the monostatic case. Note that the true solution for height

is contained in the 90% credible set, which happens to contain the entire search area. A

credible set consisting of the entire search area for a parameter does provide some useful

insight, as it informs the user that the specific parameter does not impact the rest of the

distribution, allowing the user to treat the parameter as a nuissance parameter. Nuissance

parameters can be removed from the search space by setting an arbitrary value (since

changing the parameter has no effect on the output of the estimator), effectively reducing

the dimensionality of the search space. Treating parameters as nuissance parameters is an

effective way to reduce computational complexity, if allowable.
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Figure 4.4: Marginal PMFs for the first dihedral scene at coarse zoom.
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Figure 4.5: Marginal PMFs for the first dihedral scene at fine zoom.
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4.4.4 Dihedral 2.

The second dihedral scene is intended to depict a different scattering geometry than

the first dihedral. The first dihedral is oriented along the surface plane, resulting in a double

bounce scattering response. The second dihedral is oriented at a slight angle (10°), inducing

some single bounce scattering response [17]. Notice from Table 4.4 that the MAP estimates

all fall within half of a search interval, aligning with the expected bias shown in Chapter 3.

Figures 4.6 and 4.7 present the marginal distributions for the first dihedral scene. Note that

the slight angle of 10° adds just enough scattering response to estimate the height correctly.

Figure 4.6: Marginal PMFs for the second dihedral scene at coarse zoom.
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Figure 4.7: Marginal PMFs for the second dihedral scene at fine zoom.

4.4.5 Trihedral.

The results for the trihedral scene indicate favorable performance for the CSE. Notice

from Table 4.4 that the MAP estimates all fall within half of a search interval, aligning with

the expected bias shown in Chapter 3. Figures 4.8 and 4.9 depict the marginal PMFs for

the trihedral scene. Note that the marginal distribution for height shows that all values are

equally as likely. The reason for this is the same as the dihedral cases above. Recall the

equation for the amplitude response term of a trihedral [5], shown as

MΓm(k,Λ;Θm) =

jk
√
π
A ×

{
sin(θ̃+ π

4−tan−1( 1√
2

)); θ̃ ∈ [0,tan−1( 1√
2

)]

cos(θ̃+ π
4−tan−1( 1√

2
)); θ̃ ∈ [tan−1( 1√

2
), π2 ]

}
×

{
− cos(φ̃− π4 ); φ̃ ∈ [− π4 ,0]
sin(φ̃− π4 ); φ̃ ∈ [0, π4 ]

} , (4.5)

where A = 2
√

3H2. Notice that the height term is not present in any of the sine or cosine

components for the monostatic case. For the bistatic case, there are additional sinc terms
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containing H, which makes estimating the height possible. As such, it is impossible to

directly estimate the height term for a trihedral using the CSE in the monostatic case. Note

that the true solution for height is contained in the α = 90% credible set, which happens

to contain the entire search area. As mentioned in the dihedral cases, it is also possible

to treat the height term in the trihedral case as a nuissance parameter, reducing the overall

dimensionality of the computation to three.

Figure 4.8: Marginal PMFs for the trihedral scene at coarse zoom.
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Figure 4.9: Marginal PMFs for the trihedral scene at fine zoom.

4.4.6 Cylinder.

The results for the cylinder scene demonstrate an issue with phase wrapping in the

differential range term, e jk∆R and inadequate flight path extent. Notice from Table 4.4 that

the MAP estimates all fall within half of a search interval, except for the estimate on X

position. Figures 4.10 and 4.11 depict the marginal PMFs for the cylinder scene. Notice

that all MAP estimates for each parameter contains the true value except the X location.

Recall the differential range model for the cylinder [5], shown as

∆R = ∆R0 +

(
r cos

(
θt − θr

2

)
(cos φt + cos φr)

)
. (4.6)
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In the monostatic case, the equation reduces to

∆R = ∆R0 + 2r(cos φ). (4.7)

Phase wrapping in the differential range term makes location estimation difficult because

the values recycle every 2π radians [4]. Also, the estimation error for X position is likely

due to inadequate azimuth extent. Recall that layover causes objects above the ground

plane to appear closer to the radar on the slant plane [18]. Since the cylinder is positioned

2m above the ground plane, it appears closer to the radar (negative x-axis). Recall, the

method presented by Crosser partitions the flight path into two segments, generates two

images, and uses geometric properties of layover to estimate the scattering center [4].

The CSE application presented in this thesis is incapable of producing a single PMF with

two separate flight path segments. The CSE instead treats both segments of the flight

path as one longer flight path. As such, the CSE requires more azimuth extent than the

dictionary method presented by Crosser [4]. It is important to note that the CSE provides

the probability of a parameter set (Θ) given observations (x), and as such the distribution

produced is correct for the given observations. However, greater azimuth extent is required

in the observations for the MAP estimate and true parameter values to match.
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Figure 4.10: Marginal PMFs for the cylinder scene at coarse zoom.

73



Figure 4.11: Marginal PMFs for the cylinder scene at fine zoom.
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4.4.7 Top-Hat.

The top-hat scene represents another “ideal” application of the CSE. Notice from

Table 4.4 that the MAP estimates all fall within half of a search interval, aligning with the

expected bias shown in Chapter 3. Figures 4.12 and 4.13 depict the marginal PMFs for

the top-hat scene. Notice that the MAP estimates for each parameter contain the true value.

Note that the top-hat X/Y location is not affected by the layover since the scatterer is located

on the ground plane.

Figure 4.12: Marginal PMFs for the top-hat scene at coarse zoom.
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Figure 4.13: Marginal PMFs for the top-hat at scene fine zoom.

4.4.8 Sphere.

The results for the sphere scene demonstrate another issue with phase wrapping in the

differential range term, e jk∆R and inadequate flight path extent. Notice from Table 4.4 that

the MAP estimates for X/Y position fall within half of a search interval, but the Z location

and radius estimates are incorrect. Figures 4.14 and 4.15 depict the marginal PMFs for the

sphere scene. Notice the discrepencies in the Z location and radius estimates. Recall the

differential range model for the sphere [5], shown as

∆R = ∆R0 +

(
r(cos θt + cosθr) cos

(
φt − φr

2

)
cos

(
θt + θr

2

)
+ r sin

(
θt + θr

2

)
(sin θt + sin θr)

)
.

(4.8)
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For the monostatic case, the equation reduces to

∆R = ∆R0 + 2
[
r(cos θ)2 + r(sin θ)2

]
. (4.9)

Notice that the only terms remaining in Equation (4.9) are radius (r) and elevation (θ),

both of which effect the estimates of radius and height for a sphere. Crosser generates

two images, using two different flight paths, and applies geometric layover properties to

estimate both the radius and Z location of a sphere [4]. The CSE treats two segments

of a flight path as one longer flight path. Since the radius and Z-location parameters are

coupled in the data, the estimates radius and Z location are affected, indicating that the

flight path contains inadequate elevation extent to produce a reliable estimate. A flight

path with greater elevation extent is required to produce more accurate estimates. Again,

it is important to note that the CSE provides the probability of a parameter set (Θ) given

observations (x), and as such the distribution produced is correct for the given observations.

However, greater elevation extent is required in the observations for the MAP estimate and

true parameter values to match.
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Figure 4.14: Marginal PMFs for the sphere scene at coarse zoom.
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Figure 4.15: Marginal PMFs for the sphere scene at fine zoom.
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4.5 Multiple Shapes in One Scene

In order to transition to SAR scenes containing real target data, it is pertinent to apply

the estimator to a scene with multiple canonical features. To evaluate this concept, an

additional scene containing a dihedral and cylinder are examined. Figure 4.16 depicts a

SAR image containing the two shapes. Table 4.5 details the scene parameters. The CSE is

applied twice to each scene, first utilizing the two-pass flight path to extract the cylinder,

then utilizing the up-down flight path to extract the dihedral. Figures 4.17 and 4.18 depict

the marginal PMFs associated with the cylinder and dihedral respectively.

Note that most of the parameter estimates are incorrect. The multiple shape

implementation of the CSE presented in this section attempted to apply key assumptions

from both the likelihood function and the CLEAN method [19]. Application of the

likelihood function assumes the received signal contains only the signal of interest and

noise. The CLEAN method assumes that objects separated in the image space are

orthogonal in phase history. However, the likelihood and CLEAN assumptions contradict

each other, therefore we must accept the assumptions of the likelihood function. In order

to apply the CSE on a scene with multiple shapes, some form of data segmentation must be

implemented in order to reduce the scene into multiple regions that contain one shape and

noise. Chapter 5 proposes an experiment to implement the CSE on multiple shape scenes.

Table 4.5: Scene parameters for the multiple canonical feature test scene. Note that roll,
pitch and yaw are fixed at zero degrees.

Shape X (m) Y (m) Z (m) L (m) H (m) r (m)

Dihedral 2.5 2.00 0 0.30 0.20 -

Cylinder -2.50 -2.00 0 0.50 - 0.50
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Figure 4.16: SAR image for multiple shape test scene. Note that the two shapes are
sufficiently separated
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Figure 4.17: Marginal PMFs for the cylinder in the two shape scene at coarse zoom.

82



Figure 4.18: Marginal PMFs for the dihedral in the two shape scene at coarse zoom.
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V. Conclusions and Future Work

The following sections detail future work and the conclusions from this thesis. We

consider two areas in which CSE can be extended:

• Variable Zoom and Sampling: a potential method for reducing the computational

complexity of CSE that involves randomly sampling the search space.

• Proposed Experiment: a potential method for applying CSE to SAR data containing

more than one canonical feature.

This chapter will close with conclusions and final thoughts about CSE.

5.1 Future Work: Variable Zoom and Sampling

The CSE in its current form is incredibly computationally intensive. The canonical

features results generated in Chapter 4 take over eighteen hours to compute using the HPC.

Also, we have demonstrated that sampling too coarsly initially severly impacts estimator

performance, and is often the cause of missing the true parameter value. One potential

solution would be to randomly sample the space. Figure 5.1 depicts the concept.
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Figure 5.1: Marginal PMFs for the sphere scene at coarse zoom.

5.2 Future Work: Proposed Experiment

This section serves as an “proposed experiment” applying the CSE to more realistic

SAR phase history data with multiple shapes.

5.2.1 Key Assumptions.

• Received signals contain only a signal of interest and additive white Gaussian noise.

This assumption is required by application of the univariate normal distribution as

the likelihood function.

• Parameters are considered to be independent. This assumption is required in order to

initialize prior distributions without a covariance matrix.

• Prior distributions are finitely bounded. This assumption makes numerically

computing the denominator in the posterior distribution possible.
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• Individual canonical features can be segmented from the data. This assumption

enables the use of the univariate normal distribution for the likelihood function.

5.2.2 Algorithm.

Application of the CSE to canonical features requires the following modifications to

the estimator presented in Chapter 4:

• The SPLIT algorithm is used to determine which canonical features are present in

the scene [16].

• The phase history data for each feature is segmented resulting in only the data

associated with the feature and noise.

• The CSE as presented in Chapter 4 is used in multiple iterations to provide posterior

distributions for each shape present in the scene.

5.2.3 Shape Type Initialization Using SPLIT.

The presented experiment explores the possibility of fitting a set of features to

collected phase history data. Work by Jackson and Fuller [5, 16] has shown that vehicles

exhibit two dominant types of scatters, namely the cylinder and dihedral. Layover from

the roof line of the vehicle often results in a series of cylinders, while the double bounce

response of the vehicle side and the ground plane result in a series of dihedrals. Figure 5.2

depicts this concept.
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Figure 5.2: SAR image of a Nissan Sentra with canonical features extracted by the SPLIT
algorithm.

5.2.4 Experiment Summary.

A notional algorithm is presented in Figure 5.3. To ensure reliability, the algorithm

should be tested first against a synthetic scene containing multiple canonical features. Once

the algorithm is validated, it can then be tested against more realistic data, such as the

civilian vehicles (CV) Domes data set [20].
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Figure 5.3: Flowchart depicting the CSE implementation for use with CV Domes data.
Red box indicates parallel process. Dashed blue box indicates updates to Rademacher’s
algorithm.

5.3 Conclusions

This research has focused validation of the credible set estimation scheme, extension

of the CSE to large observation sets and higher dimensions, incorporation of Crosser’s

work on flight path selection [4], and evaluation of the new CSE as presented in this thesis.

The following sections detail the findings.

5.3.1 Alternative Computation Method.

Prior to deriving the formula presented in Equation (3.12), attempts were made to

solve for the posterior distribution using a high precision float (HPF) tool. However,

applying the HPF tool to the CSE resulted in expected run times of over two weeks

(compared to the 18 hour run times using the formula presented in this research).

88



5.3.2 Validation.

Application of Gauss-Quadrature numerical integration techniques to the computation

of the posterior distribution results in significant reductions in TAE. The results presented

in this thesis show that the quadrature implementation results in almost negligible TAE

(on the order of 10−5 or less when using a Nl = 5 integration polynomial), which is

significantly less than the sampling method (where error is on the order of 10−1). In terms

of MAP performance, we determined that the CSE implementation results in exactly the

same amount of error as the sampling method, demonstrating that the computation of the

entire posterior distribution does not degrade the performance if a sole MAP estimate is

needed.

It is important to note that the method presented in this thesis applies to any estimation

problem requiring Bayesian methods, not just the simple signals and SAR models used in

this thesis. Also, the method is not limited to a specific likelihood function. The method

can be implemented for any combination of likelihood and prior distributions.

5.3.3 Extension.

The presented formula for the computation of the Bayesian posterior distribution

enables numerical evaluation for large observation sets (greater than 6000 observations).

The canonical feature examples generated in this thesis contain approximately 7,300

observations. The equation presented in Chapter 3 enables computation of posterior

distributions where the log p(Θ|X) is on the order of e−730. The validation section of this

thesis has shown that estimates of posterior distributions with more than 5000 observations

may require a higher-order integration polynomial, depending on the desired accuracy.

5.3.4 Incorporation.

Incorporation of the flight paths presented by Crosser [4] into CSE results in

acceptable performance for the extraction of posterior distributions. However, in terms

of MAP performance, it is important to note that additional azimuth/elevation extent may
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be required in addition to the requirements presented by Crosser. However, it is important

to note that the distributions extracted by the CSE are the probability of a parameter set

given a set of observations, p(Θ|X). The CSE produces accurate representations of the

posterior distributions for a set of observations. However, MAP performance decreases (in

both the CSE and standard MAP estimators) when estimating canonical feature parameters

without sufficient data extent.

5.3.5 Evaluation.

The new CSE is able to extract posterior distributions for features with up to five

parameters. This thesis presents formulas for the computational complexity required

when implementing the CSE. Estimation of features with six or more parameters

requires splitting each large distribution into multiple smaller distributions to avoid large

computational overhead.

5.3.6 Closing Thoughts.

The CSE presented in this thesis is capable of estimating posterior distributions for

high-dimensional problems with large numbers of observations. The estimation scheme,

as implemented, is ideal for radar, communications and other statistical problems where

retaining the entire posterior distribution and associated confidence intervals is desirable.

As such, CSE provides a powerful and flexible alternative to other estimation schemes.
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Appendix A: Additional Monte Carlo Data

Table A.1: Sample Monte Carlo data from the N = 1 observation at 1.0 interval case.
Legendre polynomial Nl = 3 was used.

µ µ̂e µ̂g µ̂s εµ̂e εµ̂g εµ̂s T AEg T AEs

5.1974 5 5 5 0.19736 0.19736 0.19736 0.00054046 0.20152

5.7168 5 5 5 0.71679 0.71679 0.71679 0.0027565 0.2965

5.9023 6 6 6 0.097669 0.097669 0.097669 0.0010208 0.22191

5.2568 5 5 5 0.25678 0.25678 0.25678 0.0026833 0.29954

7.6388 8 8 8 0.36121 0.36121 0.36121 0.0016324 0.16905

7.499 7 7 7 0.49904 0.49904 0.49904 0.0019216 0.20035

5.5914 6 6 6 0.40861 0.40861 0.40861 0.00095225 0.21909

6.3891 7 7 7 0.61095 0.61095 0.61095 0.0021419 0.27512

6.8639 7 7 7 0.13607 0.13607 0.13607 0.0022373 0.27983

7.8521 8 8 8 0.1479 0.1479 0.1479 0.0023404 0.24573

6.0783 6 6 6 0.078288 0.078288 0.078288 0.0026343 0.29794

6.4362 7 7 7 0.56379 0.56379 0.56379 0.00064146 0.20737

5.648 6 6 6 0.35205 0.35205 0.35205 0.00078288 0.2126

7.4158 7 7 7 0.41581 0.41581 0.41581 0.0027598 0.29803

7.2786 7 7 7 0.27862 0.27862 0.27862 0.0024848 0.26166

7.8279 8 8 8 0.17206 0.17206 0.17206 0.0024675 0.29086

6.2746 6 6 6 0.27458 0.27458 0.27458 0.0026019 0.2967

7.2369 7 7 7 0.23694 0.23694 0.23694 0.00071949 0.21039

6.0785 6 6 6 0.078539 0.078539 0.078539 0.0019334 0.26477

7.0885 7 7 7 0.088482 0.088482 0.088482 0.00053527 0.20122
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Table A.2: Sample Monte Carlo data from the N = 1 observation at 0.1 interval case.
Legendre polynomial Nl = 5 was used.

µ µ̂e µ̂g µ̂s εµ̂e εµ̂g εµ̂s T AEg T AEs

7.5199 7.8 7.8 7.8 0.28006 0.28006 0.28006 7.6613e-15 0.0040225

7.2978 7.4 7.4 7.4 0.10215 0.10215 0.10215 4.008e-15 0.0040427

5.0329 5.2 5.2 5.2 0.16706 0.16706 0.16706 3.8846e-15 0.0040256

7.4427 7.5 7.5 7.5 0.057273 0.057273 0.057273 4.4507e-15 0.0040459

5.1615 5.1 5.1 5.1 0.061535 0.061535 0.061535 3.9848e-15 0.0040207

5.8954 5.8 5.8 5.8 0.095392 0.095392 0.095392 3.934e-15 0.0040359

7.9866 8.3 8.3 8.3 0.31343 0.31343 0.31343 5.3713e-15 0.0040163

6.8731 6.7 6.7 6.7 0.17311 0.17311 0.17311 3.8728e-15 0.0040325

7.8115 7.4 7.4 7.4 0.41147 0.41147 0.41147 4.0174e-15 0.004046

5.8195 5.6 5.6 5.6 0.21953 0.21953 0.21953 4.0635e-15 0.0040269

7.009 6.9 6.9 6.9 0.10901 0.10901 0.10901 3.6726e-15 0.0040455

5.5013 5.5 5.5 5.5 0.0013448 0.0013448 0.0013448 3.9113e-15 0.004032

5.6221 5.8 5.8 5.8 0.17788 0.17788 0.17788 3.9354e-15 0.0040215

7.8599 7.7 7.7 7.7 0.15987 0.15987 0.15987 7.1573e-15 0.0040465

5.1401 5.1 5.1 5.1 0.040096 0.040096 0.040096 3.9611e-15 0.004015

7.4261 7.9 7.9 7.9 0.47392 0.47392 0.47392 8.6877e-15 0.0040457

5.3837 5.3 5.3 5.3 0.08373 0.08373 0.08373 3.7327e-15 0.0040431

6.8345 6.7 6.7 6.7 0.13447 0.13447 0.13447 4.1361e-15 0.0040119

7.0417 7 7 7 0.041729 0.041729 0.041729 3.879e-15 0.0040432

6.272 6.5 6.5 6.5 0.22803 0.22803 0.22803 3.7855e-15 0.0040469
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Table A.3: Sample Monte Carlo data from the N = 1 observation at 0.01 interval case.
Legendre polynomial Nl = 5 was used.

µ µ̂e µ̂g µ̂s εµ̂e εµ̂g εµ̂s T AEg T AEs

5.824 5.28 5.28 5.28 0.54397 0.54397 0.54397 1.1007e-14 4.033e-05

5.8527 5.75 5.75 5.75 0.10268 0.10268 0.10268 1.0286e-14 4.033e-05

5.3076 5.22 5.22 5.22 0.087555 0.087555 0.087555 1.0082e-14 4.0325e-05

6.1702 6.29 6.29 6.29 0.11977 0.11977 0.11977 1.0013e-14 4.0326e-05

5.798 5.97 5.97 5.97 0.17198 0.17198 0.17198 1.0386e-14 4.0328e-05

6.398 6.32 6.32 6.32 0.077975 0.077975 0.077975 1.0734e-14 4.0325e-05

6.0987 5.77 5.77 5.77 0.32865 0.32865 0.32865 1.04e-14 4.0329e-05

6.1934 6.47 6.47 6.47 0.27662 0.27662 0.27662 1.0245e-14 4.033e-05

7.8447 7.97 7.97 7.97 0.12531 0.12531 0.12531 9.2645e-14 4.0328e-05

7.1108 6.98 6.98 6.98 0.13077 0.13077 0.13077 1.0024e-14 4.0328e-05

7.8357 7.54 7.54 7.54 0.29568 0.29568 0.29568 2.9337e-14 4.0329e-05

6.4631 6.48 6.48 6.48 0.016911 0.016911 0.016911 9.6901e-15 4.0325e-05

5.8921 5.86 5.86 5.86 0.032131 0.032131 0.032131 9.6508e-15 4.0325e-05

5.029 4.97 4.97 4.97 0.058972 0.058972 0.058972 1.0341e-14 4.0329e-05

5.4041 5.86 5.86 5.86 0.45594 0.45594 0.45594 1.0427e-14 4.0325e-05

6.2713 6.19 6.19 6.19 0.081275 0.081275 0.081275 9.7663e-15 4.0329e-05

6.7118 6.36 6.36 6.36 0.35184 0.35184 0.35184 1.0364e-14 4.0324e-05

5.7821 5.6 5.6 5.6 0.18207 0.18207 0.18207 1.0327e-14 4.0326e-05

7.0992 6.95 6.95 6.95 0.14924 0.14924 0.14924 1.0662e-14 4.033e-05

6.943 7.08 7.08 7.08 0.137 0.137 0.137 1.0287e-14 4.033e-05
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Table A.4: Sample Monte Carlo data from the N = 5 observation at 0.01 interval case.
Legendre polynomial Nl = 5 was used.

µ µ̂e µ̂g µ̂s εµ̂e εµ̂g εµ̂s T AEg T AEs

5.4231 5.22 5.22 5.22 0.20309 0.20309 0.20309 3.8002e-14 0.00020168

5.4576 5.61 5.61 5.61 0.15243 0.15243 0.15243 3.8485e-14 0.00020168

6.8517 6.89 6.89 6.89 0.038343 0.038343 0.038343 6.0104e-14 0.00020164

7.3032 7.14 7.14 7.14 0.16322 0.16322 0.16322 5.9795e-14 0.00020164

7.1285 7.07 7.07 7.07 0.058517 0.058517 0.058517 5.9498e-14 0.00020157

7.5282 7.66 7.66 7.66 0.13178 0.13178 0.13178 6.1191e-14 0.00020161

5.7593 5.78 5.78 5.78 0.020705 0.020705 0.020705 3.857e-14 0.00020168

5.2004 5.45 5.45 5.45 0.24961 0.24961 0.24961 3.8295e-14 0.00020161

7.4649 7.15 7.15 7.15 0.31486 0.31486 0.31486 6.0688e-14 0.00020167

5.7116 5.75 5.75 5.75 0.038409 0.038409 0.038409 3.8929e-14 0.0002016

7.8366 7.72 7.72 7.72 0.11658 0.11658 0.11658 6.2241e-14 0.00020167

7.0801 7.1 7.1 7.1 0.019948 0.019948 0.019948 6.0095e-14 0.00020168

6.2169 6.35 6.35 6.35 0.13307 0.13307 0.13307 4.7122e-14 0.00020157

7.1124 7.4 7.4 7.4 0.28758 0.28758 0.28758 6.0388e-14 0.00020168

7.9449 8.42 8.42 8.42 0.47505 0.47505 0.47505 7.3375e-14 0.00020157

6.1209 6.37 6.37 6.37 0.24909 0.24909 0.24909 4.8536e-14 0.00020157

6.3004 6.56 6.56 6.56 0.25965 0.25965 0.25965 5.873e-14 0.00020159

7.0496 6.88 6.88 6.88 0.16962 0.16962 0.16962 6.0606e-14 0.00020157

6.5974 6.52 6.52 6.52 0.077434 0.077434 0.077434 5.6967e-14 0.00020168

7.7345 7.86 7.86 7.86 0.12546 0.12546 0.12546 8.3124e-14 0.00020167
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Table A.5: Sample Monte Carlo data from the N = 50 observation at 0.01 interval case.
Legendre polynomial Nl = 5 was used.

µ µ̂e µ̂g µ̂s εµ̂e εµ̂g εµ̂s T AEg T AEs

6.4188 6.42 6.42 6.42 0.0011693 0.0011693 0.0011693 3.7513e-14 0.002

6.6832 6.74 6.74 6.74 0.056809 0.056809 0.056809 4.0114e-14 0.0020196

6.2456 6.21 6.21 6.21 0.035575 0.035575 0.035575 3.4067e-14 0.0019996

5.8216 5.79 5.79 5.79 0.031608 0.031608 0.031608 8.2565e-15 0.0020209

7.5371 7.47 7.47 7.47 0.06708 0.06708 0.06708 3.1418e-14 0.0020073

5.0667 5.03 5.03 5.03 0.036658 0.036658 0.036658 3.1318e-14 0.002021

5.473 5.48 5.48 5.48 0.0069756 0.0069756 0.0069756 2.8784e-14 0.0020038

7.4218 7.4 7.4 7.4 0.021777 0.021777 0.021777 4.2085e-14 0.0019996

5.7105 5.71 5.71 5.71 0.00046015 0.00046015 0.00046015 3.0524e-14 0.0020025

5.4709 5.45 5.45 5.45 0.020875 0.020875 0.020875 2.8406e-14 0.0020221

6.3879 6.39 6.39 6.39 0.0020747 0.0020747 0.0020747 4.7967e-14 0.0020191

6.9677 6.96 6.96 6.96 0.0077444 0.0077444 0.0077444 2.9653e-14 0.0020179

5.479 5.43 5.43 5.43 0.04904 0.04904 0.04904 3.0703e-14 0.0020136

5.1368 5.15 5.15 5.15 0.013156 0.013156 0.013156 3.7198e-14 0.0020205

7.7127 7.68 7.68 7.68 0.032719 0.032719 0.032719 3.4765e-14 0.0019996

7.2558 7.25 7.25 7.25 0.0058374 0.0058374 0.0058374 3.2324e-14 0.0020214

7.5587 7.52 7.52 7.52 0.038651 0.038651 0.038651 9.5541e-14 0.0020202

5.2537 5.28 5.28 5.28 0.026264 0.026264 0.026264 2.6259e-14 0.0020174

6.4553 6.45 6.45 6.45 0.0053114 0.0053114 0.0053114 3.0998e-14 0.0020065

7.3247 7.27 7.27 7.27 0.054673 0.054673 0.054673 3.5757e-14 0.0020171
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Table A.6: Sample Monte Carlo data from the N = 500 observation at 0.01 interval case.
Legendre polynomial Nl = 5 was used.

µ µ̂e µ̂g µ̂s εµ̂e εµ̂g εµ̂s T AEg T AEs

6.9124 6.94 6.94 6.94 0.027625 0.027625 0.027625 1.0412e-13 0.02001

5.1465 5.14 5.14 5.14 0.0065074 0.0065074 0.0065074 3.2254e-13 0.018997

6.1271 6.14 6.14 6.14 0.012865 0.012865 0.012865 3.1705e-13 0.018958

6.8031 6.77 6.77 6.77 0.033084 0.033084 0.033084 2.1156e-13 0.020661

6.2372 6.25 6.25 6.25 0.012839 0.012839 0.012839 2.9373e-13 0.020302

5.9068 5.89 5.89 5.89 0.016755 0.016755 0.016755 6.662e-14 0.020109

6.0492 6.07 6.07 6.07 0.020762 0.020762 0.020762 3.4181e-13 0.020309

7.0844 7.08 7.08 7.08 0.0043916 0.0043916 0.0043916 1.1158e-13 0.02018

6.6055 6.61 6.61 6.61 0.0045213 0.0045213 0.0045213 1.9463e-13 0.019789

6.0447 6.04 6.04 6.04 0.0046675 0.0046675 0.0046675 1.1907e-13 0.019003

5.0469 5.08 5.08 5.08 0.033112 0.033112 0.033112 6.4135e-14 0.020393

7.1637 7.17 7.17 7.17 0.0063228 0.0063228 0.0063228 2.8886e-13 0.020642

5.0031 5.02 5.02 5.02 0.016948 0.016948 0.016948 1.6936e-13 0.020647

6.6333 6.62 6.62 6.62 0.013318 0.013318 0.013318 6.2661e-13 0.020283

6.9201 6.92 6.92 6.92 0.00014483 0.00014483 0.00014483 3.9256e-13 0.019369

6.1027 6.09 6.09 6.09 0.012729 0.012729 0.012729 2.0749e-13 0.018981

6.8466 6.86 6.86 6.86 0.013402 0.013402 0.013402 4.6883e-14 0.02

6.7115 6.7 6.7 6.7 0.011499 0.011499 0.011499 1.8904e-13 0.020431

7.8673 7.86 7.86 7.86 0.0072952 0.0072952 0.0072952 7.4445e-14 0.01938

5.5569 5.55 5.55 5.55 0.0068763 0.0068763 0.0068763 2.0212e-13 0.02042
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Table A.7: Sample Monte Carlo data from the N = 5000 observation at 0.1 interval case.
Legendre polynomial Nl = 5 was used.

µ µ̂e µ̂g µ̂s εµ̂e εµ̂g εµ̂s T AEg T AEs

7.0573 7.1 7.1 7.1 0.04273 0.04273 0.04273 0.0058767 0.019491

5.1511 5.1 5.1 5.1 0.051142 0.051142 0.051142 0.10874 0.41538

5.6286 5.6 5.6 5.6 0.028576 0.028576 0.028576 0.00020511 0.00024857

6.1293 6.1 6.1 6.1 0.029271 0.029271 0.029271 6.7695e-06 7.0346e-06

5.1751 5.2 5.2 5.2 0.024917 0.024917 0.024917 0.00010277 0.00011651

5.4461 5.4 5.4 5.4 0.04612 0.04612 0.04612 0.10975 0.44679

6.3965 6.4 6.4 6.4 0.0035282 0.0035282 0.0035282 2.8464e-29 2.0298e-101

6.5731 6.6 6.6 6.6 0.026892 0.026892 0.026892 1.7852e-07 1.8147e-07

5.6881 5.7 5.7 5.7 0.011862 0.011862 0.011862 2.1656e-16 2.2204e-16

5.1158 5.1 5.1 5.1 0.015815 0.015815 0.015815 2.1785e-14 2.2204e-14

6.8519 6.8 6.8 6.8 0.05186 0.05186 0.05186 0.013797 0.50455

5.1221 5.1 5.1 5.1 0.022094 0.022094 0.022094 1.4079e-08 1.4256e-08

5.8594 5.9 5.9 5.9 0.040649 0.040649 0.040649 0.036784 0.094867

5.4638 5.5 5.5 5.5 0.036203 0.036203 0.036203 0.00090266 0.0018272

5.0109 5 5 5 0.010883 0.010883 0.010883 1.3525e-23 4.8757e-91

5.1128 5.1 5.1 5.1 0.01277 0.01277 0.01277 3.797e-14 3.8636e-14

5.9968 6 6 6 0.0031862 0.0031862 0.0031862 1.1616e-28 2.6557e-100

7.3982 7.4 7.4 7.4 0.0018186 0.0018186 0.0018186 3.8202e-25 7.1622e-94

6.3252 6.3 6.3 6.3 0.025248 0.025248 0.025248 1.0109e-07 1.0263e-07

5.964 6 6 6 0.035993 0.035993 0.035993 0.00088434 0.0017604
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Appendix B: Additional Graphical Validation Results

Figure B.1: Validation results for N = 1 observation at 1.0 interval. Legendre polynomial
of order Nl = 3.

Figure B.2: Validation results for N = 1 observation at 0.1 interval. Legendre polynomial
of order Nl = 5.
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Figure B.3: Validation results for N = 1 observation at 0.01 interval. Legendre polynomial
of order Nl = 5. Figure is zoomed into the region 5.9 ≤ Θ̂ ≤ 8.1.

Figure B.4: Validation results for N = 5 observations at 0.01 interval. Legendre polynomial
of order Nl = 5. Figure is zoomed into the region 6.9 ≤ Θ̂ ≤ 7.6.
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Figure B.5: Validation results for N = 50 observations at 0.01 interval. Legendre
polynomial of order Nl = 5. Figure is zoomed into the region 7.7 ≤ Θ̂ ≤ 8.2.

Figure B.6: Validation results for N = 500 observations at 0.01 interval. Legendre
polynomial of order Nl = 5. Figure is zoomed into the region 7.7 ≤ Θ̂ ≤ 8.1.
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Figure B.7: Validation results for N = 5000 observations at 0.1 interval. Legendre
polynomial of order Nl = 5. Figure is zoomed into the region 7.3 ≤ Θ̂ ≤ 8.7.
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